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Understanding Genetics

If you only had four letters to work with, what kind of story could
you tell?



Genomics Is easy...

Deoxyribonucleic Acid (DNA) is made of complex molecules
called nucleotides. There are 4 types abbreviated A, T,C,G.

> Nucleotide bases form stables pairs: A-T and C-G. Two
complimentary strands of these bases form DNA.

» DNAs broken into 23 long strands known as chromosomes.

» The sections of the DNA that contain instructions on how to
build proteins are called genes.

» Genes in the DNA are transcribed into a single strand of
similar nucleotides called Ribonucleic Acid (RNA) and this
“message’ is processed by the cell and turned into protein.



Something easy with ~ 3,000,000,000

nleces can be really complicated...

For context, computers operate with just two “bases” O
and 1.

With enough Os and 1s it turns out you can make
computer’'s do some pretty impressive and complicated
STUfT.

DNA has 4 bases, x 3 Billion with
a lot more chemical and spatial
annotation.

This makes IBM's Watson or
ChatGPT look simple by
comparison, even if they
do beat us at Jeopardy




DNA — RNA — Protein

e Stores
information

e Used as a
template
for RNA

 Genes are regions of the DNA that are transcribed into RNA
 RNA carries the DNA code out into the rest of the cell where it
can be used as instructions to make protein



Mutation and Cancer

Cancer can be caused by accidental changes in the
genome known as mutations

As these accumulate, genes start to gain new functions,
or lose old ones

At the point that the cells start o multiply in an
uncontrolled way, we call it cancer



A single base pair
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WHIM-like CXCR4 mutations
in Waldenstrom’s Macroglobulinemia

.cxcuz/snF-m

30-40% of WM patients
Occur in the C-terminal
domain (same site as
WHIM patients)
Nonsense and
frameshift mutations
Associated with high
IGM, hyperviscosity.
Multiple CXCR4
mutations can be
present within an

individual patient.

Hunter et al, Blood 2013; Rocarro et al, Blood 2014: Poulain et al, Blood 2016; Poulain
et al, CCR 2016; Xu et al, BJH 2016; Varettoni et al, Haematologica 2017.




How to make it all fif...

Microvilli

/4 _ Secretory vesicles

: Cytosol
Golgi apparatus -
—Centrioles
Rough endoplasmic
reticulum
Lysosome
Smooth enc?opiasmic
reticulum
eui Cytoskeleton

Nuclear envelope —
— Free ribosomes

Nuclear pores < | &

Mitochondrion — & ~ Nucleolus

Anatomy of a Cell

3 billion base pairs strung end
to end is about 40 inches in
length.

This quantity of DNA resides
inside the nucleus of every
cell in your body

Needless to say, thisis a
tightly controlled process.

Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2




Our apologies, the DNA you are looking for

Is temporarily unavailable...

o EPIGENETIC MECHANISMS HEALTH ENDPOINTS
\' are affectad by these factors and processes: — * Cancer

\ + Development (in utero, chidhood) R, * Autoimmune disease

b « Environmental chemicals . * Mental disorders

+ Drugs/Pharmaceuticals : * Diabetes

, « Diet
£ . 20 CHROMATIN y \I E:g%r;snc

DNA methylation

Methyl group (an epigenetic factor found
in some dietary sources) can tag DNA
and activate or repress genas.

HISTONE TAIL

GENE HISTONE TAIL

DNA accessible, gene active

Histone modification

The binding of epigenetic factors to histone “talls®
Histones are proteins around which | HISTONE ‘ alters the extent to which DNA is wrapped around
DNA can wind for compaction and DNA inaccessible, gene inactive histones and the avallability of genes in the DNA
gene regulation. 10 be activated.

Laura, B. (2008) Epigenomics: The new tools in studying complex disease. Nature Education



Infroducing the “omes”

The Genome

* Stores
information

* Used as a
template
for RNA

The Transcriptome

e Transcribed

The Proteome

Protein

out most
cellular work

from DNA
* Encodes
instructions
to make
protein
Micro-RNA
EPIGENETICS

The Epigenome

K
Provides
structure, /
signaling, |
and carries v ).

A
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The genome as the cell's operating

system
o | D

The operating system of your
computer (Windows/Max
OSX/Linux) provides a set of
tools fo allow programs to be
loaded and run. Every laptop
may have the same operating
system, but no one uses their
laptop in exactly the same
way

The Environment

* $
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Twin Studies

While idenftical twins
share many things in
common, they also
have very different
lives, unique
personalities, get
different diseases
and after a number
of years can look
quite different from
each other.

theguardian | TheObserver

News | US | World  Sports Comment | Culture Business Money

Why do identical twins end up having

such different lives?

Their genes are exactly the same, so why don't identical siblings'
lives follow more similar patterns? The scientist behind a
pioneering 21-year study believes he has the answer

P Robin McKie
=, The Observer, Saturday 1 June 2013
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Every Cell in Your Body has the Same

DNA. Why Don't They Act Like Ite
What defines cell type?

same DNA, but different:

proteins, .
morphology libids. & gene chromatin
& behavior pIas, expression organization
metabolites
stem cell .
Fhog NPy
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neuron 143 -
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Image Credit: Nicolas Alfemose.




Epigenetics and Cancer

Our bodiesarea  ..built from different ..that are made up ~.that have unique

bunch of parts..  kinds of tissues... of different cell types... ©Pigenetic marks The eplgenome

on their DNA!

| — vy ~controls which parts of

the genome the cell

can see so each cell
Ce eI type effectively has a
- unigue genome.
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https://www.thetech.org/ask-a-geneticist/articles/2019/epigenetics-and-cell-types/

Some epigenetic of these gene controls are dynamic and change with the
environment and some are designed to be stable and define the cell type. In
cancer, mutations in the DNA and mistakes in epigenomic maintenance can let

cells access parts of the genome that they are not supposed to see and even
start to lose some of their cell type identity.



Cell of Origin in Cancer

Cellular Differentiation

https://www.science.org.au/curious/epigenetics

Epigenetic programming from the
cell of origin that does not impact the
cancer will stay intact providing
guidepost to determine the cell type
where the cancer first began

The Cell of Origin Model

Tumour
Oncogenic /[ . —_— Subtype x
event A
Oncogenic /[ _—
event A sublypey
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Visvader, J. Cells of origin in cancer. Nature 469, 314-322 (2011)
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Epigenetic Studies in MYDG88

Mutated WM

. Cell Type

B HD PB
B HD MB
B HD PC
¥ WM MYD88-Mut/CXCR4-WT
2 WM MYD88-Mut/CXCR4-Mut
WM MYD88-WT
¥ igM MM
ell Line

Selection

e CD19+
ACD138+
+ Cell Line

UMAP 2

Weill Cornell
Ari M Melnick
Epigenomics Core at Weill Cornell

Epigenomics Core (R

Hunter et al, ASH 2023

UMAP 1



The Bing Center 300-Project: Developing a

Mmulti-omic model of untreated WM

RNASeq was performed on CD19* bone marrow (BM) samples from 249
treatment-naive WM patients who were MYD88 mutated, as well as 13 paired
CD19*CD27 and CD19*CD27* selected healthy donor (HD) peripheral blood
samples. Whole exome sequencing of CD19* BM cells along with CD19" peripheral
blood mononuclear controls was also performed for 215 of the WM samples.

Metric Median Min Max

Age at Diagnosis (Years) 63 31 91
Bone Marrow Infiltration (%) 50 5 95
HGB 12 3.7 17
IgA 52 5 587
lgG 569 24 4,728
IgM 3,224 104 10,321

Median patient follow up is 8.8 years (range 0.2 - 33.8 years)



The CXCR4 Mutant Signature: The Chicken

or the Egg?

WNT5A PRDM5
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Since there are CXCR4 mutant samples that do nof have the
signature and CXCR4 wild-type samples which do, can we
characterize this signature independent of CXCR4 statuse



Clustering WM Samples Based on
ene Expression
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How do WM Cells Evolve Over Timee
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Hunter et al , ASH 2023

Subtypes of Evolution o WM
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Unsubtyped (77/249; 31%)

*Concentrated in early pseudo-time values. More likely to
be asymptomatic/Smoldering WM. Appears to evolve into
BCL or PCL over time.

*Intermediate expression of subtype associated genes
B-Cell Like (BCL; 104/249; 42%)

*Subtype associated gene expression regressed to HD
levels

*Mutations: CXCR4 (80% vs. 7%), CD79B (9% vs. 3%) ,
Amp Chr18q (16% vs. 2%)

*Immunophenotype: CD5 (18% vs. 6%)

Plasma Cell Like (PCL; 68/249; 27%)

*Subtype associated gene expression becomes more
extreme relative to HD levels

*Mutations: NOTCH1 (9.5% vs. 1.1%), EP300 (18% vs.
5%), Amp Chr6p (18% vs. 3%) , Del Chr6q (46% vs 28%),
Del Chr17p (10% vs. 0%)

*Immunophenotype: CD10 (12% vs. 1%)

*Clinical Presentation: WM BM Involvement (70% vs.
40%)



Understanding the Transition from IgM MGUS and

Smolder in Symptomatic Disease

Mean Somatic Mutation Burden by Stage
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Predicting Time to First Therapy

Time from Biopsy to First Therapy by Stage

Strata =+~ Stage=Early == Stage=Late
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Changes in the Bone Marrow
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Putting It all together

. —~——
Multipotential hematopoietic C D34

stem cell Genes Related to WM Evolution by Factorized DPT Level
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Molecular Subtype and Clustering

Studies at the Mayo Clinic
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