
NCCN Guidelines Version 2.2024
Waldenström Macroglobulinemia/
Lymphoplasmacytic Lymphoma

NCCN Guidelines Index
Table of Contents
Discussion

NCCN Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma Panel Members
Summary of Guidelines Updates

Diagnosis and Workup (WM/LPL-1)
Asymptomatic or Minimally Symptomatic (WM/LPL-2)
Primary Treatment, Response, Relapse (WM/LPL-3)

WHO Criteria for Lymphoplasmacytic Lymphoma and Waldenström Macroglobulinemia
Waldenström Macroglobulinemia International Workshop Criteria (WM/LPL-A)
Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma Therapy (WM/LPL-B)
Response Criteria for WM/LPL (WM/LPL-C)
Management of Bing Neel Syndrome (BNS-1)

Abbreviations (ABBR-1)

Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Find an NCCN Member Institution: https://www.nccn.org/home/member-institutions

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise indicated.

See NCCN Categories of Evidence and Consensus.

NCCN Categories of Preference: All recommendations are considered appropriate.

See NCCN Categories of Preference.

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®, All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2023.
Updates in Version 2.2024 of the NCCN Guidelines for WM/LPL from Version 1.2024 include:

WM/LPL-C
- The table was updated to reflect IWWM-11 response criteria for assessment of disease response
- Reference updated

MS-1
- The Discussion section has been updated to reflect the changes in the algorithm

Updates in Version 1.2024 of the NCCN Guidelines for WM/LPL from Version 1.2023 include:

WM/LPL-1
- Workup:
 - 9th bullet modified: Chest/abdomen abdominal/pelvis pelvic CT with ± contrast and/or PET/CT when possible.

WM/LPL-B 1 of 4
- Side Effects and Laboratory Tests:
 - 2nd bullet modified: Serial serum IgA and IgG levels should be carefully monitored as these can be depleted with WM therapies. See Prevention and Treatment of Cancer-Related Infections.

WM/LPL-B 2 of 4
- Footnote f added: Rapid increases in IgM levels (IgM rebound) have been observed following discontinuation of BTK inhibitors. Consider continuing therapy with the BTK inhibitor until starting the next line of therapy or monitor for IgM rebound after discontinuation of BTK inhibitors. (Also for WM/LPL-B 3 of 4)

WM/LPL-B 3 of 4
- Therapy for previously treated WM/LPL.
 - Other Recommended Regimens: RCHOP (rituximab/cyclophosphamide/doxorubicin/vincristine/prednisone) moved to Useful in Certain Circumstances.

WM/LPL-B 4 of 4
- Reference list modified.

TERMINOLOGIES IN ALL NCCN GUIDELINES ARE BEING ACTIVELY MODIFIED TO ADVANCE THE GOALS OF EQUITY, INCLUSION, AND REPRESENTATION.
NCCN Guidelines Version 2.2024

Waldenström Macroglobulinemia/ Lymphoplasmacytic Lymphoma

DIAGNOSIS

WORKUP

Essential
- History and physical examination
- Complete blood count (CBC), differential, platelet count
- Peripheral blood smear
- Comprehensive metabolic panel (CMP) including serum blood urea nitrogen (BUN)/creatinine, electrolytes, albumin, calcium, and liver function tests (LFTs)
- Serum uric acid, serum lactate dehydrogenase (LDH), and beta-2 microglobulin
- Creatinine clearance (calculated or measured directly)
- Serum quantitative immunoglobulins, serum protein electrophoresis (SPEP), serum immuno fixation electrophoresis (SIFE)
- Unilateral bone marrow aspirate and biopsy, including immunohistochemistry (IHC) and/or multi-parameter flow cytometry
- Chest/abdomen/pelvis CT ± contrast and/or PET/CT when possible
- MYD88 L265P allele-specific polymerase chain reaction (AS-PCR) testing of bone marrow

Useful in Certain Circumstances
- Serum viscosity
- CXCR4 gene mutation testing for patients being considered for Bruton’s tyrosine kinase (BTK) inhibitors
- Testing for hepatitis B (if rituximab planned), hepatitis C, and HIV
- Cryocrit
- Consider coagulation and/or von Willebrand disease testing if symptoms present (excess bruising or bleeding) or if clinically indicated
- Cold agglutinins
- Neurology consult
- Anti–myelin-associated glycoprotein (MAG) antibodies/anti-GM1
- Nerve conduction study (NCS)/electromyogram (EMG)
- Fat pad sampling and/or congo red staining of bone marrow for amyloid
- Retinal examination (if IgM ≥3.0 g/dL or if hyperviscosity is suspected)
- 24-h urine for total protein, urine protein electrophoresis (UPEP), and urine immunofixation electrophoresis (UIFE)
- Amyloid tissue subtyping with mass spectrometry, if indicated
- If central nervous system (CNS) symptoms, see BNS-1

Asymptomatic or minimally symptomatic

Monitoring Plan (WM/LPL-2)

Symptoms related to:
- Hyperviscosity
- Neuropathy
- Organomegaly
- Amyloidosis
- Cold agglutinin disease
- Cryoglobulinemia
- Anemia and other cytopenias associated with disease
- Bulky adenopathy
- B symptoms
- Cytopenias

Primary Treatment (WM/LPL-3)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 2.2024
Waldenström Macroglobulinemia/
Lymphoplasmacytic Lymphoma

ASYMPTOMATIC OR MINIMALLY SYMPTOMATIC WM

<table>
<thead>
<tr>
<th>Risk Score</th>
<th>Median Time to Progression</th>
<th>Follow-Up</th>
<th>Indications for Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Risk</td>
<td>9.2 years</td>
<td>Monitor every 12 months with CBC, CMP, SPEP, serum immunoglobulins</td>
<td>Symptoms related to:</td>
</tr>
<tr>
<td>Intermediate Risk</td>
<td>4.8 years</td>
<td>Monitor every 6 months with CBC, CMP, SPEP, serum immunoglobulins</td>
<td>Hyperviscosity, Neuropathy, Organomegaly, Amyloidosis, Cold agglutinin disease, Cryoglobulinemia, Anemia and other cytopenias, Bulky adenopathy, B symptoms, Cytopenias</td>
</tr>
<tr>
<td>High Risk</td>
<td>1.8 years</td>
<td>Monitor every 3 months with CBC, CMP, SPEP, serum immunoglobulins</td>
<td></td>
</tr>
</tbody>
</table>

Symfony-related:
- Hyperviscosity
- Neuropathy
- Organomegaly
- Amyloidosis
- Cold agglutinin disease
- Cryoglobulinemia
- Anemia and other cytopenias
- Bulky adenopathy
- B symptoms
- Cytopenias

Primary Treatment (WM/LPL-3)

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Reserve therapy only for symptomatic patients, as untreated asymptomatic patients have similar survival than age- and sex-matched individuals of the general population.

Risk score calculator available at www.awmrisk.com. All values taken at approximately the same time.

Confirm symptoms are not related to or caused by other comorbidities.

Retinal examination once a year if serum IgM level >3000 mg/dL. Consider therapy in asymptomatic patients with serum IgM level >6000 mg/dL.

Detection of cold agglutinins or cryoglobulins in the absence of symptoms does not represent a criterion to treat.
Primary Treatment

- If treated with fixed-duration chemoimmunotherapy regimens:
 - Plasmapheresis for symptomatic hyperviscosity
 - Primary therapy or Clinical trial

- If treated with BTK inhibitor regimens:
 - Continue treatment until disease progression or unacceptable toxicity

Management After Primary Treatment

- Observe until progressive disease
- Continue treatment

Relapse

- Consider previously used regimens, if well tolerated and had a prolonged response

Alternative Therapy

- Choose alternative therapy

If transformation, see NCCN Guidelines for B-Cell Lymphomas, Follicular Lymphoma

Plasmapheresis should be performed for patients with symptomatic hyperviscosity, and before treatment with rituximab-containing regimens in patients with IgM ≥4000 mg/dL. IgM should be monitored closely in these patients thereafter and plasmapheresis should be considered again if symptomatic hyperviscosity recurs or if IgM is ≥4000 mg/dL while on rituximab-containing therapy. Red blood cell (RBC) transfusion, if indicated, should be done after plasmapheresis to prevent added hyperviscosity load.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
WHO CRITERIA FOR LYMPHOPLASMACYTIC LYMPHOMA AND WALDENSTRÖM MACROGLOBULINEMIA

- **Lymphoplasmacytic lymphoma:**
 - Neoplasm of small B lymphocytes, plasmacytoid lymphocytes, and plasma cells
 - Usually involving bone marrow and sometimes lymph nodes and spleen
 - Does not fulfill criteria of any other small B-cell lymphoid neoplasm that may also have plasmacytic differentiation

- **Waldenström macroglobulinemia:**
 - Lymphoplasmacytic lymphoma with bone marrow involvement and IgM monoclonal gammopathy of any concentration

WALDENSTRÖM MACROGLOBULINEMIA INTERNATIONAL WORKSHOP CRITERIA

Proposed Criteria for the Diagnosis of Waldenström Macroglobulinemia
- IgM monoclonal gammopathy of any concentration
- Bone marrow infiltration by small lymphocytes, plasmacytoid cells, and plasma cells
- Diffuse, interstitial, or nodular pattern of bone marrow infiltration
- CD19+, CD20+, sIgM+; CD5, CD10, CD23 can be expressed in some cases of Waldenström macroglobulinemia and does not exclude diagnosis.

REVISED IPSS WALDENSTRÖM MACROGLOBULINEMIA SCORING SYSTEM

Criteria for the Diagnosis of Waldenström Macroglobulinemia (only at the time of initial treatment prognostication)

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age <65</td>
<td>0</td>
</tr>
<tr>
<td>Age 66–75</td>
<td>1</td>
</tr>
<tr>
<td>Age >75</td>
<td>2</td>
</tr>
<tr>
<td>B2 microglobulin >4 mg/L</td>
<td>1</td>
</tr>
<tr>
<td>LDH >250 IU/L</td>
<td>1</td>
</tr>
<tr>
<td>Serum albumin <3.5 g/dL</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Score*</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Very Low</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Intermediate</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>4–5</td>
<td>Very High</td>
<td></td>
</tr>
</tbody>
</table>

*Sum of total points in Table 1

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
GENERAL CONSIDERATIONS FOR SYSTEMIC THERAPY FOR WM/LPL

General Principles
- Frailty assessment should be considered in older adults. See [NCCN Guidelines for Older Adult Oncology](#).
- If candidates for hematopoietic cell transplantation (HCT)
 - Exposure to nucleoside analogs (fludarabine and cladribine) should be avoided in patients who may be potential autologous HCT candidates.
- Plasmapheresis
 - In patients with symptomatic hyperviscosity, plasmapheresis should first be performed; plasmapheresis should also be considered before treatment with rituximab or ofatumumab for patients with asymptomatic Waldenström macroglobulinemia (WM) with an IgM ≥4000 mg/dL or who are symptomatic to avoid aggravation of serum viscosity based on rituximab-related IgM flare. Rituximab or ofatumumab may also be held in patients with elevated serum IgM levels for initial treatment cycles. Blood warmers should be used for apheresis if cryoprecipitate or cryoglobulin are present.

Screening Recommendations
- Test for hepatitis B before starting carfilzomib, rituximab, or ofatumumab.
- Screen for HIV and hepatitis C, as clinically indicated.

Prophylaxis Recommendations
- Pneumocystis jiroveci pneumonia (PJP) prophylaxis should be considered for patients receiving bendamustine/rituximab or fludarabine/cyclophosphamide/rituximab.
- Administer herpes zoster prophylaxis for all patients treated with proteasome inhibitors and nucleoside analogs.
- Prophylactic antiviral therapy with entecavir is recommended for any patient who is hepatitis B surface antigen-positive and receiving anti-CD20 therapy. If there is active disease (PCR+), it is considered treatment/management and not prophylactic therapy. In cases of hepatitis B core antibody positivity, prophylactic antiviral therapy is preferred; however, if there is a concurrent high-level hepatitis B surface antibody, these patients may be monitored with serial hepatitis B viral load.

Side Effects and Laboratory Tests
- Carfilzomib can potentially cause cardiac and pulmonary toxicity, especially in older patients.
- Serial serum IgA and IgG levels should be carefully monitored as these can be depleted with WM therapies. See [Prevention and Treatment of Cancer-Related Infections](#).
- Regimens containing bortezomib and vincristine are associated with higher risk of treatment-related peripheral neuropathy, especially in those with disease-related baseline neuropathy. Close monitoring or alternative therapies should be considered in some patients.

Dosing and Administration of Proteasome Inhibitors
- Subcutaneous bortezomib is the preferred method of administration.
- Both weekly and twice-weekly dosing schemas of bortezomib may be appropriate; weekly is preferred.
- Carfilzomib may be used once or twice weekly and at different doses.

Substitutions
- Rituximab and hyaluronidase human injection for subcutaneous administration may be substituted for rituximab after patients have received the first full dose of rituximab by intravenous infusion.
- An U.S. Food and Drug Administration (FDA)-approved biosimilar is an appropriate substitute for rituximab.
PRIMARY THERAPY FOR WM/LPL

(Orders of regimens is alphabetical and does not indicate preference)

<table>
<thead>
<tr>
<th>Preferred Regimens</th>
<th>Other Recommended Regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bendamustine/rituximab</td>
<td>• Rituximab</td>
</tr>
<tr>
<td>• Bortezomib/dexamethasone/rituximab</td>
<td>• Rituximab/cyclophosphamide/dexamethasone</td>
</tr>
<tr>
<td>• Ibrutinib± rituximab (category 1)</td>
<td>• Rituximab/cyclophosphamide/prednisone</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>• Zanubrutinib (category 1)</td>
<td></td>
</tr>
</tbody>
</table>

General Considerations for Systemic Therapy for WM/LPL (WM/LPL-B 1 of 4).

- a Consider for patients presenting with symptomatic hyperviscosity, or in whom rapid IgM reduction is required.
- b Rapid increases in IgM levels (IgM rebound) have been observed following discontinuation of BTK inhibitors. Consider continuing therapy with the BTK inhibitor until starting the next line of therapy or monitor for IgM rebound after discontinuation of BTK inhibitors.
- c Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Therapies for Previously Treated WM/LPL

Preferred Regimens

<table>
<thead>
<tr>
<th>Preferred Regimens</th>
<th>Other Recommended Regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bendamustine/rituximab</td>
<td>• Rituximab/cyclophosphamide/dexamethasone</td>
</tr>
<tr>
<td>• Bortezomib/dexamethasone/rituximab</td>
<td>• Zanubrutinib (category 1)</td>
</tr>
<tr>
<td>• Ibrutinib ± rituximab (category 1)</td>
<td></td>
</tr>
<tr>
<td>• Rituximab/cyclophosphamide/dexamethasone</td>
<td></td>
</tr>
<tr>
<td>• Zanubrutinib (category 1)</td>
<td></td>
</tr>
</tbody>
</table>

Other Recommended Regimens

- Acalabrutinib
- Bendamustine
- Ixazomib/rituximab/dexamethasone
- Rituximab/cyclophosphamide/prednisone
- Venetoclax

Useful in Certain Circumstances

- Cladribine ± rituximab
- Everolimus
- Fludarabine ± rituximab
- Fludarabine/cyclophosphamide/rituximab
- Ofatumumab (for rituximab-intolerant individuals)
- RCHOP (rituximab/cyclophosphamide/doxorubicin/vincristine/prednisone)

Hematopoietic Cell Transplant

- In selected patients HCT may be appropriate with either:
 - Allogeneic HCT (ablative or nonablative)
 - Autologous HCT

a General Considerations for Systemic Therapy for WM/LPL (WM/LPL-B 1 of 4).

b Consider for patients presenting with symptomatic hyperviscosity, or in whom rapid IgM reduction is required.

c Rapid increases in IgM levels (IgM rebound) have been observed following discontinuation of BTK inhibitors. Consider continuing therapy with the BTK inhibitor until starting the next line of therapy or monitor for IgM rebound after discontinuation of BTK inhibitors.

d May be associated with disease transformation and/or development of myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML) in patients with WM.

e Ofatumumab may be used for rituximab-intolerant individuals as a single agent or in combination therapy anywhere that rituximab is given. While ofatumumab is no longer commercially available, it may be obtained for clinical use.

f Should ideally be undertaken in the context of a clinical trial.
REFERENCES

IWWM-11 RESPONSE CRITERIA FOR ASSESSMENT OF DISEASE RESPONSE IN WM/LPL\(^1\)

<table>
<thead>
<tr>
<th>Response(^a)</th>
<th>Serum Monoclonal IgM</th>
<th>Serum IgM Level</th>
<th>Bone Marrow Aspirate and Trephine Biopsy</th>
<th>Extramedullary disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Response (CR)</td>
<td>Absence of monoclonal IgM protein by SPEP and IFX.</td>
<td>Within normal range</td>
<td>Normal morphology; no evidence of LPL involvement.</td>
<td>Absence of extramedullary disease if present at baseline. See criteria for determination of resolution of extramedullary disease.(^c)</td>
</tr>
<tr>
<td>Very good partial response (VGPR)</td>
<td></td>
<td>≥90% reduction in serum IgM levels or within normal range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial response (PR)</td>
<td></td>
<td>≥50% to < 90% reduction in serum IgM levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor response (MR)</td>
<td></td>
<td>≥25% to < 50% reduction in serum IgM levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable disease (SD)</td>
<td></td>
<td>< 25% reduction to < 25% increase in serum IgM levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progressive disease (PD)</td>
<td></td>
<td>≥ 25% increase in serum IgM levels with a minimum increase of 500 mg/dL from nadir. Reconfirmation is required by 2 sequential (back-to-back) measurements if the serum IgM is being used to support PD. Demonstration of PD by imaging does not require re-confirmation.(^b)</td>
<td>Any new lesion (> 1.5 cm in any axis) or unequivocal evidence of an increase by > 50% in any axis to > 1.5 cm in size of previously involved extramedullary disease sites from their nadir measurements. Any new lesion consistent with transformed disease.</td>
<td></td>
</tr>
<tr>
<td>Nonevaluable (NE)</td>
<td></td>
<td>Suspected IgM flare or IgM rebound, absence of data or suspected error in data reporting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Categorical response assessment for CR, VGPR, PR, MR or SD assumes no signs or symptoms consistent with disease progression are present. The overall response rate includes MR, PR, VGPR, and CR responses, whereas the major response rate includes PR, VGPR and CR responses.

\(^b\) Re-confirmation of CR, VGPR, PR, MR, or SD is not required. Progressive disease (PD) must be re-confirmed if the IgM is being used to support PD. To meet criteria for progressive disease, a ≥25% increase in serum IgM level with a minimum serum IgM increase of 500 mg/dL from the nadir is required on 2 sequential (back-to-back) measurements. In the event an IgM measurement meets PD criteria, and the subsequent measurement does not, the patient will not have met PD criteria until 2 back-to-back measurements show PD. Demonstration of PD by imaging does not require re-confirmation. In the event of discordant response findings, that is, IgM measurement shows a response but imaging shows PD related to WM, then the assessment should be considered PD.

\(^c\) Suspected IgM flare or IgM rebound related to therapy will not be considered as progressive disease.

\(^d\) A nonevaluable response assessment should be specified in cases of suspected IgM flare or IgM rebound; absence of data, or suspected error in data reporting (ie, contradictory central vs local laboratory measurements).

\(^e\) For CR attainment, normalization of extramedullary disease if present at baseline will be considered complete resolution or decrease in size of lymph nodes (≤1.5 cm) or decrease in the size of spleen (≤15 cm), or complete resolution of any other non-lymph node or non-splenic extramedullary masses related to WM disease consistent with revised response criteria for malignant lymphoma. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579-586.
MANAGEMENT OF BING NEEL SYNDROME

WORKUP

Essential
• Brain and entire spine MRI with gadolinium enhancement
• Lumbar puncture for cerebrospinal fluid (CSF) analysis (cytology, multiparameter flow cytometry, PCR for IgH gene rearrangement, PCR for MYD88 L265P)

Useful in Certain Circumstances
• Biopsy of affected tissue
• Concurrent bone marrow aspiration and biopsy for IgH gene rearrangement and MYD88 L265P testing

Definitive Diagnosis
• Presence of clonal B cells in CSF or tissue biopsy with similar profile than systemic disease with or without leptomeningeal enhancement or masses in MRI

Probable Diagnosis
• Abnormal MRI findings without evidence of clonal B cells in CSF or tissue biopsy

Asymptomatic → Observation

Symptomatic\(^a,b\) → Preferred Regimens
• Ibrutinib
• Zanubrutinib

Other Recommended Regimens
• Bendamustine
• Cytarabine
• Fludarabine
• Methotrexate

Useful in Certain Circumstances
• Intrathecal methotrexate
• Radiotherapy

\(^a\) Rituximab can be added to these regimens if systemic control is needed.

NCCN Guidelines Version 1.2024
Waldenström Macroglobulinemia/ Lymphoplasmacytic Lymphoma

ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML</td>
<td>acute myeloid leukemia</td>
</tr>
<tr>
<td>AS-PCR</td>
<td>allele-specific polymerase chain reaction</td>
</tr>
<tr>
<td>BUN</td>
<td>blood urea nitrogen</td>
</tr>
<tr>
<td>CBC</td>
<td>complete blood count</td>
</tr>
<tr>
<td>CMP</td>
<td>comprehensive metabolic panel</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CR</td>
<td>complete response</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>EMG</td>
<td>electromyogram</td>
</tr>
<tr>
<td>GM1</td>
<td>monosialotetrahexosylganglioside</td>
</tr>
<tr>
<td>HCT</td>
<td>hematopoietic cell transplantation</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>IgA</td>
<td>immunoglobulin A</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>immunoglobulin M</td>
</tr>
<tr>
<td>IHC</td>
<td>immunohistochemistry</td>
</tr>
<tr>
<td>IPSS</td>
<td>International Prognostic Scoring System</td>
</tr>
<tr>
<td>LDH</td>
<td>lactate dehydrogenase</td>
</tr>
<tr>
<td>LFT</td>
<td>liver function test</td>
</tr>
<tr>
<td>LPL</td>
<td>lymphoplasmacytic lymphoma</td>
</tr>
<tr>
<td>MAG</td>
<td>myelin-associated glycoprotein</td>
</tr>
<tr>
<td>MDS</td>
<td>myelodysplastic syndrome</td>
</tr>
<tr>
<td>MGUS</td>
<td>monoclonal gammopathy of undetermined significance</td>
</tr>
<tr>
<td>MR</td>
<td>minor response</td>
</tr>
<tr>
<td>NCS</td>
<td>nerve conduction study</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PD</td>
<td>progressive disease</td>
</tr>
<tr>
<td>PJP</td>
<td>pneumocystis jirovecii pneumonia</td>
</tr>
<tr>
<td>PR</td>
<td>partial response</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell</td>
</tr>
<tr>
<td>SD</td>
<td>stable disease</td>
</tr>
<tr>
<td>SIFE</td>
<td>serum immunofixation electrophoresis</td>
</tr>
<tr>
<td>SPEP</td>
<td>serum protein electrophoresis</td>
</tr>
<tr>
<td>UIFE</td>
<td>urine immunofixation electrophoresis</td>
</tr>
<tr>
<td>UPEP</td>
<td>urine protein electrophoresis</td>
</tr>
<tr>
<td>VGPR</td>
<td>very good partial response</td>
</tr>
<tr>
<td>WM</td>
<td>Waldenström macroglobulinemia</td>
</tr>
</tbody>
</table>
NCCN Guidelines Categories of Evidence and Consensus

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.</td>
</tr>
<tr>
<td>Category 2A</td>
<td>Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.</td>
</tr>
<tr>
<td>Category 2B</td>
<td>Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.</td>
</tr>
<tr>
<td>Category 3</td>
<td>Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.</td>
</tr>
</tbody>
</table>

All recommendations are category 2A unless otherwise indicated.

NCCN Guidelines Categories of Preference

<table>
<thead>
<tr>
<th>classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred intervention</td>
<td>Interventions that are based on superior efficacy, safety, and evidence; and, when appropriate, affordability.</td>
</tr>
<tr>
<td>Other recommended intervention</td>
<td>Other interventions that may be somewhat less efficacious, more toxic, or based on less mature data; or significantly less affordable for similar outcomes.</td>
</tr>
<tr>
<td>Useful in certain circumstances</td>
<td>Other interventions that may be used for selected patient populations (defined with recommendation).</td>
</tr>
</tbody>
</table>

All recommendations are considered appropriate.
Discussion

This discussion corresponds to the NCCN Guidelines for Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma. Last updated: December 3rd, 2023.

Table of Contents

- Overview MS-2
- Literature Search Criteria and Guidelines Update Methodology.......MS-2
- Diagnosis ... MS-2
- Workup .. MS-2
 - Essential Tests .. MS-2
 - Tests Useful Under Certain Circumstances .. MS-3
- Primary Therapy Regimens for WM/LPL ... MS-4
 - Preferred Regimens for Primary Therapy ... MS-5
 - Other Recommended Regimens for Primary Therapy MS-7
 - Assessment of Response to Primary Treatment MS-9
- Follow-up After Primary Treatment ... MS-9
- Therapy for Previously Treated WM ... MS-9
- References ... MS-15
Waldenström macroglobulinemia (WM) is a B-cell disorder characterized primarily by bone marrow infiltration with lymphoplasmacytic cells and immunoglobulin M (IgM) monoclonal gammopathy. This condition is defined as “lymphoplasmacytic lymphoma” (LPL) by the Revised European-American Lymphoma (REAL) and World Health Organization (WHO) classification systems. WM is a rare disorder with approximately 1000 to 1500 new cases diagnosed annually in the United States.

The complete details of the Development and Update of the NCCN Guidelines are available at www.NCCN.org.

Diagnosis

Key to the diagnosis of WM/LPL is the demonstration of bone marrow infiltration by a lymphoplasmacytic cell population manifested by small lymphocytes with evidence of plasmacytoid/plasma cell differentiation. The bone marrow infiltration should be supported by immunophenotypic studies (flow cytometry and/or immunohistochemistry) showing the following profile: sIgM+, CD19+, CD20+, CD22+. According to the current WHO classification, the lymphocytes in WM are typically negative for CD5, CD10, and CD23. However, this should not exclude diagnosis as exceptions occur and approximately 10% to 20% of cases may express CD5, CD10, or CD23. MYD88 (L265P) mutations are present in greater than 90% of patients with WM, and can help differentiate WM/LPL from IgM myeloma or marginal zone lymphoma.

Workup

Essential Tests

History and physical (H&P) examination are essential components of initial evaluation. The essential laboratory studies include complete blood count (CBC) with differential, peripheral blood smear examination, and comprehensive metabolic panel (CMP). CMP includes serum blood urea nitrogen (BUN)/creatinine, electrolytes, albumin, calcium, and liver function tests (LFTs) to assess kidney and liver function. To establish the diagnosis of WM, it is necessary to demonstrate IgM monoclonal protein in the serum and histologic evidence of lymphoplasmacytic cells in the bone marrow. Serum protein electrophoresis (SPEP), serum quantitative immunoglobulins, and serum immunofixation electrophoresis (SIFE) are used to identify and quantify the M-protein (IgM). While detection of a monoclonal IgM protein in the...
serum is a diagnostic criterion for WM, this monoclonal IgM may be found clinically either in the setting of clinical WM, IgM monoclonal gammopathy of undetermined significance (IgM MGUS), or IgM multiple myeloma. It is important to make this distinction during diagnosis. Approximately 5% of patients with LPL can secrete non-IgM paraproteins (e.g., IgG, IgA, kappa, lambda) or be non-secretory and should be managed like WM.

The International Prognostic Scoring System for WM (IPSSWM) is useful for prognostication of WM at first-line treatment initiation. Its value in making treatment-related decisions remains to be clarified. Bone marrow is almost always involved in WM; therefore, a unilateral bone marrow aspirate and biopsy should be performed to document clonal lymphoplasmacytic cell population and confirmed by immunohistochemistry and/or flow cytometry. Multiparametric flow cytometry may provide additional data on the immunophenotypic characterization of WM.

The bone marrow aspirate should be tested for MYD88 (L265P) mutation. Whole genome sequencing of bone marrow LPL cells has identified MYD88 (L265P) as a commonly recurring mutation in patients with WM. Absence of MYD88 mutations should not be used to exclude diagnosis of WM if other criteria are met. The NCCN Panel recommends allele-specific polymerase chain reaction (AS-PCR) for MYD88 (L265P) detection.

CT scans of the chest, abdomen, and pelvis with intravenous (IV) contrast and/or PET-CT at time of diagnosis are useful to properly stage the patient and can assess adenopathy, splenomegaly, and other extramedullary disease sites.

Tests Useful Under Certain Circumstances
IgM is a pentamer and a common cause of hyperviscosity. Therefore, evaluation for characteristic clinical signs and symptoms of serum viscosity should be done at diagnosis. Many patients with WM will exhibit an elevated serum viscosity level of over 1.8 centipoise (cP). Patients typically become symptomatic at serum viscosity levels of over 4.0 cP. However, in some patients, lower levels of serum viscosity can cause retinal changes and hemorrhages that may necessitate intervention. Serum viscosity results should not be used as the sole criterion for intervention, in part due to long turnaround time and potential technical issues.

In less than 10% of patients with WM, monoclonal IgM may present with cold agglutinin activity, where the monoclonal IgM interact with specific red cell antigens below physiological temperatures, producing chronic hemolytic anemia. The cold agglutinin titers are greater than 1:1000 in most cases. In up to 20% of patients with WM, the monoclonal IgM may behave as a cryoglobulin (type I) but will be symptomatic in less than or equal to 5% of the cases. The presence of cold agglutinins or cryoglobulins may affect determination of IgM levels; therefore, testing for cold agglutinins and cryoglobulins should be performed at diagnosis.

When suspected, cryocrit, a test for cryoglobulins, should be obtained. The presence of cryoglobulins may render falsely low serum IgM levels. In such situations, maintaining the serum sample in a warm bath will provide a more reliable serum IgM level measurement.

Twenty-four-hour urine for total protein, creatinine clearance, urine protein electrophoresis (UPEP), and urine immunofixation electrophoresis (UIFE) may be useful.
Patients with WM and peripheral neuropathy may harbor antibodies against myelin-associated glycoprotein (MAG) or other glycoproteins or lipids. Serum anti-MAG antibodies can be evaluated in patients with sensory peripheral neuropathies; in those with motor neuropathy, anti-ganglioside M1 (GM1) antibodies may also be evaluated. In patients with peripheral neuropathy, referral for neurologic consultation should be considered. Nerve conduction studies (NCS) or electromyography (EMG) may help determine if neuropathy is related to the monoclonal process or other causes.

The median age at the time of WM diagnosis ranges from 60 to 75 years. Therefore, frailty assessment should be considered prior to treatment of older adults with WM as per NCCN Guidelines for Older Adult Oncology (available at NCCN.org).

The manifestation of neurological deficits is ambiguous and could be the result of underlying comorbidities. If CNS involvement is suspected in individuals with WM; imaging studies, CSF analysis, or tissue biopsy are needed to investigate Bing-Neel syndrome.

Asymptomatic or Minimally Symptomatic

Waldenström macroglobulinemia may be preceded by asymptomatic disease states such as IgM monoclonal gammopathy of undetermined significance (IgM MGUS) or smoldering WM (SWM). Approximately 1.5% of patients with IgM MGUS and 12% of those with SWM have disease progression to WM per year. The risk of disease progression is estimated using an asymptomatic risk score calculator, which takes the following diagnostic measurements into consideration: bone marrow involvement (%), serum IgM level, serum beta-2-microglobulin level, and serum albumin level. Based on the risk score, the risk of disease progression is categorized into low-risk, intermediate-risk, and high-risk, with a median time to progression to symptomatic disease of 9.2 years, 4.8 years, and 1.8 years, respectively. The frequency of follow-up varies based on the risk status. Follow-up includes monitoring with diagnostic testing, including CBC, CMP, SPEP, and serum immunoglobulins, every 12 months for low risk, every 6 months for intermediate risk, and every 3 months for high risk.

Primary Therapy Regimens for WM/LPL

According to the NCCN WM/LPL Panel, treatment should be initiated for patients with a diagnosis of WM/LPL only in those who are symptomatic. The indicative symptoms of treatment include hyperviscosity; neuropathy; symptomatic adenopathy or organomegaly; amyloidosis; cryoglobulinemia; cold agglutinin disease; anemia; B-symptoms and presence of cytopenia. Importantly, high IgM level per se should not be considered a criterion for initiation of therapy in the absence of other indications. The NCCN panel notes that it is important to rule out symptoms related to comorbidities before treatment initiation and detection of cold agglutinins or cryoglobulins in the absence of symptoms does not represent a criterion to treat, whereas treatment should be considered in asymptomatic patients with serum IgM level >6000 mg/dL.

Since WM is a rare disease, few randomized trials and limited data comparing different treatment approaches exist. Therefore, the treatment for WM has been primarily adopted from data derived from phase II or retrospective studies.

According to the NCCN Panel, for patients requiring immediate disease control, such as those with symptomatic hyperviscosity, initial plasmapheresis is recommended. After plasmapheresis, systemic treatment should be initiated as soon as possible.
Agents that limit future treatment options should be avoided during initial therapy. Exposure to continuous oral alkylator therapy or nucleoside analogs should be avoided prior to stem cell harvest if an autologous stem cell transplant (SCT) is being considered. Nucleoside analogs are associated with an increased risk of disease transformation, development of myelodysplastic syndromes (MDS), and secondary acute myeloid leukemia (AML).

Exposure to nucleoside analogs should be limited, particularly in younger patients who may be potential SCT candidates. The NCCN Panel recommends monitoring of serum IgG levels during therapy. Herpes zoster prophylaxis should be considered for patients receiving proteasome inhibitor-based regimens and nucleoside analogs.

Hepatitis B virus (HBV) reactivation is common in patients with hematologic malignancies. The NCCN Panel recommends screening for HBV infection by testing for hepatitis B surface antigen (HBsAg) or antibody to hepatitis B core antigen (HbcAb) before starting therapy with carfilzomib or anti-CD20 monoclonal antibodies. Prophylactic antiviral therapy with entecavir is recommended for those who have HBsAg to prevent HBV reactivation. In those with resolved HBV infection, who have antibodies to hepatitis B core antigen (HbcAb), the panel prefers prophylaxis with antiviral therapy. However, if there is a concurrent high-level hepatitis B surface antibody, monitoring serially for hepatitis B viral load and giving antiviral therapy as soon as HBV DNA is detectable is also an option.

All treatment options for WM/LPL are listed alphabetically in the NCCN Guidelines. The NCCN Panel has categorized WM therapy regimens as: “preferred regimens,” “other recommended regimens,” and regimens “useful under certain circumstances.” The purpose of classifying regimens is to provide guidance on treatment selection considering the relative efficacy, toxicity, and other factors that play into treatment selection, such as pre-existing comorbidities (e.g., peripheral neuropathy, rituximab intolerance). The NCCN Panel Members strongly encourage treatment in the context of a clinical trial when possible.

Preferred Regimens for Primary Therapy

Bendamustine/Rituximab: Rituximab, a monoclonal antibody that targets the B-lymphocyte antigen CD20, has been used successfully in the treatment of WM, because CD20 is expressed on lymphoplasmacytic cells in patients with WM. The Study Group Indolent Lymphomas (StiL) examined the activity of bendamustine plus rituximab (BR) versus cyclophosphamide, doxorubicin, vincristine, prednisone plus rituximab (RCHOP) in a large, randomized, multicenter phase III trial of previously untreated patients with indolent non-Hodgkin lymphoma (NHL).

Included in this study were 41 patients with WM/LPL, 40 of whom were available for response assessment. After a median follow-up of 45 months, the median progression-free survival (PFS) was significantly longer with BR treatment, 69.5 versus 28.5 months with RCHOP. BR was associated with a lower incidence of grade 3 or 4 neutropenia, infectious complications, and alopecia in this study. These results suggest that BR may be a preferable option to RCHOP as primary therapy for WM.

The results of the StiL NHL-2008 MAINTAIN trial, demonstrate a median PFS of 65.3 months in those receiving bendamustine and rituximab, which is consistent with the results of the StiL NHL1-2003 trial (69.5 months).

Pneumocystis jirovecii pneumonia [PJP] prophylaxis should be considered for patients receiving bendamustine/rituximab.

The NCCN Panel has included bendamustine/rituximab as a Preferred Regimen for Primary Therapy.

Bortezomib/Dexamethasone/Rituximab: Bortezomib has shown excellent activity in the management of WM as a single agent, in combination with rituximab, or in combination with rituximab and dexamethasone.
The study by Waldenström Macroglobulinemia Clinical Trials Group (WMCTG) reported an overall response rate (ORR) of 96%, including 83% of patients achieving a partial response (PR) with the combination of intravenous (IV) bortezomib (using a twice-a-week schedule), along with rituximab and dexamethasone (BDR) in newly diagnosed patients with WM. With a median follow-up of 2 years, 80% of patients remained free of disease progression, including all patients achieving a very good partial response (VGPR) or better. However, grade 3 peripheral neuropathy was observed in 30% of patients. The development of peripheral neuropathy led to premature discontinuation of bortezomib in 61% of patients in this study.

In another multicenter phase II trial, the activity of BDR (using once-weekly IV bortezomib) was evaluated in 59 newly diagnosed symptomatic patients with WM. The ORR was 85% (3% complete response [CR], 7% VGPR, and 58% PR). In 11% of patients, an increase of IgM (≥25%) was observed after administration of rituximab. After 32 months of follow-up, median PFS was 42 months and 3-year overall survival (OS) was 81%. Peripheral neuropathy was observed in 46% (grade ≥3 in 7%) of patients; 8% discontinued bortezomib due to neuropathy.

Neuropathy is a primary toxicity observed with bortezomib-based regimens. Therefore, evaluation of patients for the development of peripheral neuropathy is important. Administering bortezomib subcutaneously and once weekly reduces the risk of peripheral neuropathy. Therefore, this is the preferred method of administration. While both weekly and twice-weekly dosing schemas of bortezomib are appropriate, the weekly schema is preferred.

The NCCN Panel has included BDR as a Preferred Regimen for Primary Therapy.

Ibrutinib with or without Rituximab: Signaling pathways from the B-cell antigen receptor and Bruton’s tyrosine kinase (BTK) are crucial in mediating the growth and survival of B-cell malignancies, including WM. A phase II trial of ibrutinib monotherapy in patients with symptomatic WM (n = 63) who received at least one prior treatment reported an ORR of 90% (10 with a VGPR, 36 with a PR, 11 with a minor response, none with a CR) and a median time to response of 4 weeks. At 5 years, the PFS and OS rates were 54% and 87%, respectively. CXCR4 mutations impacted adversely time to response, depth of response and PFS duration. Treatment-related toxic effects of grade 3 or higher included neutropenia (in 16% of patients) and thrombocytopenia (in 11% of patients). Similar results were observed in a phase II study on 30 treatment-naïve WM patients treated with ibrutinib, with an ORR of 100%, a VGPR rate of 30%, and 48-month PFS rate of 76%. Other adverse events associated with ibrutinib include bleeding and arrhythmia. The U.S. Food and Drug Administration (FDA) has approved ibrutinib as single-agent therapy for patients with WM until disease progression or unacceptable toxicity.

The phase III iNNOVATE trial (n = 150) compared both newly diagnosed and patients with relapsed/refractory WM treated with ibrutinib/rituximab or rituximab plus placebo. At 30 months of follow-up, the ibrutinib/rituximab treatment showed an ORR of 95% compared with 48% in those treated with rituximab/placebo. In newly diagnosed patients, treatment with ibrutinib/rituximab demonstrated an improved PFS at 24 months (84%) compared to the rituximab arm (59%) (hazard ratio [HR], 0.34; 95% CI, 0.12–0.95). The rituximab-induced infusion reactions were markedly reduced in the ibrutinib/rituximab arm. At 50 months of follow-up, improvements in PFS were seen with ibrutinib/rituximab (median not reached) over rituximab/placebo (median PFS, 20 months), demonstrating a significant reduction in disease progression or death (HR, 0.25; 95% CI,
0.15–0.42; \(P < .0001 \)). The estimated 54-month PFS rates were 68% with ibrutinib/rituximab versus 25% with rituximab/placebo. Median OS was not reached in either treatment arm (HR, 0.81; 95% CI, 0.33–1.99; \(P = .64 \)). The ORR was 92% with ibrutinib/rituximab versus 44% with rituximab/placebo. CXCR4 mutations affected VGPR rates (23% vs. 44%) but did not impact PFS. The most common grade 3/4 adverse events with ibrutinib/rituximab over the 5-year study period were infections (29%), atrial fibrillation (16%), hypertension (15%), neutropenia (13%), anemia (12%), and pneumonia (11%).

The NCCN Panel has included ibrutinib with or without rituximab as a Preferred Regimen for Primary Therapy (category 1).

Zanubrutinib: Zanubrutinib is a BTK inhibitor with a higher affinity to BTK than ibrutinib. In the phase III ASPEN trial, 201 patients with treatment-naïve or relapsed/refractory WM were randomized 1:1 to receive either zanubrutinib or ibrutinib. All patients had a MYD88 (L265P) mutation and 26% had a CXCR4 mutation. There was no statistical difference in VGPR between the zanubrutinib and ibrutinib groups (28% vs. 19%; \(P = .09 \)).

The 42-month PFS rate for zanubrutinib was 78% and for ibrutinib was 70% with a HR 0.63 (95% CI 0.36-1.12). Zanubrutinib induced higher VGPR (21% vs. 10%) and 42-month PFS rates (73% vs. 49%) than ibrutinib in patients with CXCR4 mutations.

The ASPEN safety data comparing zanubrutinib monotherapy showed a decrease in the incidence of atrial fibrillation (4% vs. 17%) and a lower incidence in most non-hematologic adverse events (AEs) compared with ibrutinib. The incidence of hematologic AEs was similar except for neutropenia, in which zanubrutinib was associated with a twofold likelihood of any grade (29% vs. 13%) and grade ≥3 (20% vs. 8%) neutropenia compared to ibrutinib. A larger proportion of patients received granulocyte colony-stimulating factor with zanubrutinib compared to ibrutinib.

The NCCN Panel has included zanubrutinib as a Preferred Regimen for Primary Therapy (category 1).

Other Recommended Regimens for Primary Therapy

Bendamustine: Based on the durable responses seen in previously treated WM, as monotherapy in rituximab-intolerant individuals, bendamustine has been included as an option for primary therapy for WM.

Carfilzomib/Rituximab/Dexamethasone: A prospective phase II study studied the combination of carfilzomib/rituximab/dexamethasone in newly diagnosed symptomatic patients (n = 31) with WM/LPL. Long-term follow-up demonstrated an ORR of 87% and a median PFS of 46 months. The study found that the response to this regimen was not impacted by MYD88 (L265P) mutation status. Rituximab-associated IgM flare (increase of IgM ≥25%) was observed in 23% of patients. No significant peripheral neuropathy was observed in this study. IgA and IgG depletion were commonly observed and necessitated truncation of therapy and/or IV immunoglobulin use in several patients.

The NCCN Panel has included carfilzomib/rituximab/dexamethasone as a treatment option under Other Recommended Regimens for Primary Therapy and noted under general considerations that it can potentially cause cardiac and pulmonary toxicity, especially in older patients.

Ixazomib/Rituximab/Dexamethasone: A prospective phase II study, of patients (n = 26) with symptomatic WM studied the combination of ixazomib/rituximab/dexamethasone and found this regimen to be safe and effective as a primary therapy option. All enrolled patients had the MYD88 (L265P) mutation, and 58% had a CXCR4 mutation. The median time to response was 8 weeks. The overall, major, and VGPR rates were 96%, 77%, and 19%, respectively, and the median time to response was 8 weeks. The median PFS was 40 months, median duration of response (DOR) was 38 months, and the median time to next treatment (TTNT) was
Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma

40 months. PFS, DOR, and TTNT were not affected by CXCR4 mutational profile. The NCCN Panel has included ixazomib/rituximab/dexamethasone as a treatment option under Other Recommended Regimens for Primary Therapy.

Rituximab: Single-agent rituximab is active in patients with WM; however, the response rates of single-agent rituximab using either standard or extended dosing vary between 25% and 45%. Transient increases in IgM levels (also called the IgM flare) have been reported in 40% to 50% of patients after initiation of rituximab therapy. The rituximab-related IgM flare may lead to symptomatic hyperviscosity, as well as worsening of IgM-related neuropathy, cryoglobulinemia, and other IgM-related complications. These levels may persist for months and do not indicate treatment failure but may necessitate plasmapheresis to reduce IgM levels. Prophylactic plasmapheresis can be considered in patients with high IgM levels (typically 4000 mg/dL or higher) before rituximab exposure to minimize the risk of symptomatic IgM flare. Rituximab may be reasonable for treating patients with IgM anti-MAG antibody-related neuropathies.

Rituximab/Cyclophosphamide/Dexamethasone: In a prospective study of people with untreated WM (n = 72), treatment with rituximab/cyclophosphamide/dexamethasone (R-CD) resulted in an ORR of 83% that included a 7% CR and a 67% PR. The 2-year PFS was 67% for all evaluable individuals and 80% for responders. The R-CD regimen was well-tolerated, with 9% of those experiencing grade 3 or 4 neutropenia and approximately 20% of individuals experiencing some form of toxicity related to rituximab. The 8-year OS rates based on the IPSSWM risk status for WM were 100%, 55%, and 27% for low-, intermediate-, and high-risk disease, respectively (P = .005).

Maintenance Therapy: Retrospective data supported PFS and OS benefits with maintenance rituximab after a rituximab-containing regimen. However, a recent phase III study in WM patients who attained PR or better after six cycles of bendamustine/rituximab did not show PFS or OS benefit of maintenance rituximab over observation following induction therapy. In the subset analysis, patients older than 65 and patients with high IPSS risk for WM may have benefited from maintenance.
Assessment of Response to Primary Treatment

Response to therapy in WM is defined by reduction in the IgM protein. According to the updated summary of response categories from the Eleventh International Workshop on WM, a minor response is an IgM reduction of at least 25%; a PR is defined as a greater than or equal to 50% reduction in IgM immunoglobulin; a VGPR is a greater than or equal to 90% reduction in IgM immunoglobulin; and a CR is immunofixation negativity in the serum along with resolution of extramedullary disease and clearance of the bone marrow. Stable disease is defined as a less than 25% reduction and less than 25% increase of serum IgM by electrophoresis without progression of adenopathy/organomegaly, cytopenias, or clinically significant symptoms due to disease and/or signs of WM. Progressive disease is defined as a 25% increase in serum IgM by protein electrophoresis confirmed by a second measurement. The updated summary of response categories and criteria from the Eleventh International Workshop on WM, has been included in the NCCN Guidelines (see Table on page WM/LPL-C).

An important concern with the use of IgM as a surrogate marker of disease is that it can fluctuate independently of tumor cell killing. Rituximab induces a spike or flare in serum IgM levels that can occur when used as monotherapy and in combination with other agents and lasts for several weeks to months. Conversely, bortezomib and ibrutinib can suppress IgM levels independent of killing tumor cells in certain patients. One study showed that residual IgM-producing plasma cells are spared and persist in patients treated with selective B-cell–depleting agents such as rituximab, thus potentially skewing the relative response and assessment to treatment. Therefore, in circumstances where the serum IgM levels appear to be out of context with the patient's clinical progress, a bone marrow biopsy should be considered to clarify the patient's underlying disease burden.

Follow-up After Primary Treatment

After primary therapy, the NCCN Panel recommends assessing the response to treatment using consensus panel criteria outlined on page WM/LPL-C.

The goal of treatment is symptom relief and reducing the risk of organ damage. When assessing responses, it is important to recognize that with some agents, responses (reduction of IgM) to initial therapies are often delayed and may result in underestimation of response.

If the primary treatment was with a fixed duration chemoinmunotherapy regimen, patients should be observed for disease progression with tests including CBC, CMP, and IgM every 3 months for 2 years, then every 4–6 months for an additional 3 years, then every 6–12 months. Without symptoms, progression based on serum IgM levels alone should not be a reason to restart treatment.

If treatment is initiated with a BTK inhibitor regimen, treatment should be continued until disease progression or unacceptable toxicity. Rapid increases in IgM levels (IgM rebound) have been observed following discontinuation of BTK inhibitors. Consider continuing therapy with the BTK inhibitor until starting the next line of therapy or monitor for IgM rebound after discontinuing BTK inhibitors.

If symptoms persist or there is no response to primary treatment, an alternate therapy may be administered. If there is disease transformation to an aggressive lymphoma, see NCCN Guidelines for B-Cell Lymphomas.

Therapy for Previously Treated WM

Many patients inevitably experience relapse after initial therapy and require further treatment. According to the NCCN Guidelines, administering the same regimen used for primary treatment is reasonable as therapy for relapsed disease, especially if the regimen was well-
tolerated and the patient had a prolonged response. The panel notes that caution should be used when re-treating with myelosuppressive regimens due to cumulative toxicities.

For patients with remissions lasting less than 24 months or who show progressive disease/resistance to a first-line regimen, second-line treatment may include agents of a different class of drugs, either alone or in combination. In addition, it is important to avoid exposure to stem cell-damaging agents, such as an alkylator or nucleoside analogs, in patients who are candidates for autologous SCT. Regimens that are not toxic to stem cells must be offered, especially if stem cells have not previously been harvested. All regimens listed under primary treatment options are effective options for consideration in patients with previously treated WM.

Preferred Regimens for Previously Treated WM/LPL

Bendamustine/Rituximab: Bendamustine-based therapy is effective in relapsed/refractory WM because it produces high and durable response rates. A phase II study of patients with relapsed/refractory WM who received bendamustine-based therapy reported an ORR of 83.3%. The median PFS in patients with refractory WM/LPL was 13.2 months. A phase I/II study analyzed the outcome of bendamustine plus rituximab in patients with relapsed/refractory WM. Patients had previously received a median number of 2 lines of treatment (range 1-5). The ORR reported was 80.2%. Another study evaluated the efficacy of BR and R-CD. Of the 160 patients, 60 received BR (43 with relapsed/refractory WM), and 100 received R-CD (50 had relapsed/refractory WM). In patients with relapsed/refractory WM, ORR with BR was 95% versus 87% with R-CD, \(P = .45 \); median PFS with BR was 58 versus 32 months with R-CD (2-year PFS was 66% vs. 53%; \(P = .08 \)).

Bendamustine combined with rituximab is listed as one of the preferred options for relapsed/refractory disease and single agent bendamustine is listed under Other Recommended Regimens in the algorithm.

Bortezomib/Dexamethasone/Rituximab: The use of bortezomib as therapy for relapsed disease is associated with an ORR of 60% when administered as a single agent, and of 70% to 80% when in combination with rituximab with or without dexamethasone. Grade 3 peripheral neuropathy may occur in 30% of patients using the twice-a-week dosing schedule of bortezomib and in 10% of patients receiving once-a-week dosing. Bortezomib/dexamethasone/rituximab is listed as one of the preferred options for primary therapy as well as previously treated WM/LPL.

Ibrutinib/Rituximab: Based on the results of the phase III iNNOVATE trial that included patients with relapsed/refractory WM (trial details listed under Primary Therapy for WM/LPL), the NCCN Panel has added it as one of the Preferred Regimens for Therapy for Previously Treated WM/LPL (category 1).

Rituximab/Cyclophosphamide/Dexamethasone: A phase II study investigated symptomatic patients with WM (n=100), of whom 50 patients received at least one cycle of therapy for relapsed/refractory WM and 50 patients received at least one cycle of the same regimen for newly diagnosed WM. In the relapsed/refractory setting, the median PFS reported was 32 months (95% CI: 15–51) with a 2- and 4-year PFS rates of 54% and 34%, respectively.

The NCCN Panel has included rituximab/cyclophosphamide/dexamethasone as one of the Preferred Regimens for Therapy for Previously Treated WM/LPL.
Zanubrutinib: Based on the phase III ASPEN trial results, that included relapsed/refractory WM (trial details listed under Primary Therapy for WM/LPL). The NCCN Panel has included zanubrutinib as one of the Preferred Regimens for Therapy for Previously Treated WM/LPL (category 1).

Other Recommended Regimens for Previously Treated WM/LPL

Acalabrutinib: Acalabrutinib is another BTK inhibitor that may be considered. A single-arm phase II trial analyzed the usage of acalabrutinib in 106 patients with treatment-naïve or relapsed/refractory WM. Out of the total 106 enrolled, 14 patients (13%) were treatment-naïve, 41 patients (39%) had received 3 or more prior therapies, and 33 patients (31%) had refractory disease. In treatment-naïve patients, the 24-month OS was 92% and the 24-month PFS was 90%. In relapsed/refractory patients, the 24-month OS was 89% and the 24-month PFS was 82%. The most common grade 3/4 adverse events were neutropenia (16%), pneumonia (7%), anemia (5%), and lower respiratory tract infection (5%). The NCCN Panel has included acalabrutinib as a treatment option under Other Recommended Regimens for Previously Treated WM/LPL.

Ixazomib/Rituximab/Dexamethasone: The results of a phase I/II study in patients (n=59) who had received a median of two prior therapies treated with ixazomib/rituximab/dexamethasone showed an ORR of 71% (14% VGPR 37% PR, and 20% minor response) after 8 cycles. The median duration of response reported was 36 months. The PFS and OS were 56% and 88%, respectively, after a median follow-up of 24 months. Based on this data, the NCCN Panel has included ixazomib/rituximab/dexamethasone as a treatment option under Other Recommended Regimens for Previously Treated WM/LPL.

Rituximab: Treatment with single-agent rituximab has been reported to produce 40% to 50% response rates. The NCCN Panel has included single-agent rituximab as a treatment option under Other Recommended Regimens for Previously Treated WM/LPL.

Rituximab/Cyclophosphamide/Prednisone: A retrospective study examined the outcomes of patients with WM who received 3 separate rituximab-based regimens. Rituximab/cyclophosphamide/doxorubicin/vincristine/prednisone (RCHOP); n = 23, rituximab/cyclophosphamide/vincristine/prednisone (RCVP); n = 16, or rituximab/cyclophosphamide/prednisone (RCP); n = 19. The results reported the following ORR and CR rates to the regimens: RCHOP (ORR, 96%; CR, 17%); RCVP (ORR 88%; CR 12%); RCP (ORR, 95%; CR, 0%). Therapy-related adverse events such as neutropenic fever and treatment-related neuropathy were higher for RCHOP and RCVP compared with RCP (P < .03). The NCCN Panel has included RCP as a treatment option under Other Recommended Regimens for Previously Treated WM/LPL.

Venetoclax: Venetoclax is an oral BCL2 antagonist approved for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). BCL2 is an anti-apoptotic protein that is shown to be overexpressed in primary WM cells. A phase II trial analyzed venetoclax monotherapy in 33 patients with previously treated WM. All patients had a MYD88 (L265P) mutation, and 17 patients (53%) had a CXCR4 mutation. At median follow-up of 33 months, the median PFS was 30 months. At time of data cutoff, the 30-month OS was 100% and the ORR was 84%. There was no difference in major response rate nor PFS on the basis of CXCR4 mutational status. The most common grade 3/4 adverse event was neutropenia (42%). The NCCN Panel has included venetoclax as a treatment option under Other Recommended Regimens for Previously Treated WM/LPL.
Regimens Useful in Certain Circumstances for Previously Treated WM/LPL

Cladribine Alone or with Rituximab: Cladribine, a nucleoside analogue, has been studied alone or in combination with rituximab and found to induce good ORRs with prolonged survivals. In a phase II trial of cladribine with rituximab in 29 patients with newly diagnosed or previously treated WM, reported ORRs and CR rates were 90% and 24%, respectively. Cladribine alone or with rituximab is listed under Useful in Certain Circumstances for Therapy for Previously Treated WM/LPL.

Everolimus: Everolimus, an inhibitor of mTOR, is a potentially effective drug in treating WM, with high single-agent activity but substantial toxicity. With a different mechanism of action, it offers an alternate therapeutic strategy for patients with relapsed/refractory WM. A phase II trial of single-agent everolimus was initiated in 60 patients with relapsed or relapsed/refractory WM. The response rate (minor response or better) was 73% with a PR rate of 50% and a minor response rate of 23%. The median PFS was 21 months. Grade 3- or 4-related toxicities were reported in 67% of patients. Dose reductions due to toxicity were made in 62% of patients. The most commonly reported hematologic toxicities were cytopenias. Pulmonary toxicity was seen in 5% of patients. The study reported that the patients who achieved a PR responded after a median of 2 months of treatment. Everolimus is listed in the algorithm under Useful in Certain Circumstances for Therapy for Previously Treated WM/LPL.

Fludarabine/Cyclophosphamide/Rituximab: A retrospective study of patients with relapsed/refractory WM reported an ORR of 80% after treatment with fludarabine, cyclophosphamide, and rituximab (FCR), 32.5% (n= 13) of patients reaching at least a VGPR. Another multicenter, prospective trial treated previously untreated or pretreated chemotherapy in those with WM (n = 43) with FCR regimen. Most of the participants in this study (65%) received FCR as first-line treatment, 28% of people had relapsed disease, and 7% had disease that was refractory to a previous line of treatment. The results demonstrated that FCR produces rapid response rates of 79%, with high rates of CR and VGPR. There is a risk of PJP associated with FCR treatment, including late onset of PJP. Therefore, the NCCN Panel recommends PJP prophylaxis for those treated with the FCR regimen.

Fludarabine alone or with Rituximab: Like cladribine, fludarabine is a nucleoside analogue and has been studied alone or in combination with rituximab and or cyclophosphamide in patients with newly diagnosed WM. A recent phase III trial showed that monotherapy with fludarabine was more effective than chlorambucil in terms of PFS (36.3 vs. 27.1 months; \(P = .012\)), duration of response (38.3 vs. 19.9 months; \(P < .001\)), and OS (not reached in the fludarabine arm vs. 69.8 months [95% CI, 61.6–79.8 months; \(P = .014\)] in the chlorambucil arm). A prospective, multicenter trial evaluated treatment with fludarabine with rituximab in patients with WM (n = 43) who had received less than two prior therapies, of whom 63% had received no prior therapy. The ORR was 95%. The reported median time to progression for all patients was 51.2 months and was longer for untreated patients (\(P = .017\)) and those achieving at least a VGPR (\(P = .049\)). After a median follow-up of 40.3 months, 3 cases with transformation to aggressive lymphoma and 3 cases with MDS/AML were reported. Fludarabine used alone or in combination with rituximab is listed in the algorithm under Useful in Certain Circumstances for Therapy for Previously Treated WM/LPL.

Nucleoside analogs have shown efficacy in relapsed/refractory WM/LPL either alone or in combination with rituximab. All cladribine- and fludarabine-containing regimens have been listed in the algorithm under Useful in Certain Circumstances for Therapy for Previously Treated WM/LPL.
Ofatumumab: Ofatumumab is a human monoclonal antibody (IgG1) that binds specifically to a distinct epitope encompassing both the small and large extracellular loops of the CD20 molecule. In cells expressing low levels of CD20, it induces complement-dependent cytotoxicity in vitro that is more potent compared with rituximab. Studies demonstrated that ofatumumab could be successfully administered, either as a single agent or as combination therapy with meaningful responses in patients with WM. According to the NCCN Panel ofatumumab may be considered in patients who are intolerant to rituximab, either as single-agent or combination therapy. Therefore, it is listed in the algorithm under Useful in Certain Circumstances for Therapy for Previously Treated WM/LPL.

There is a risk of IgM flare with ofatumumab, as with rituximab. Therefore, similar precautions as with rituximab should be considered when using ofatumumab in those patients who have evidence of hyperviscosity or who have elevated IgM levels.

RCHOP (rituximab/cyclophosphamide/doxorubicin/vincristine/prednisone): RCHOP is a stem cell–sparing regimen reported to be active and tolerated by patients with WM. It has been reported as having at least a 90% response rate in patients with WM. In a randomized study involving 69 patients, most of whom had WM, the addition of rituximab to CHOP resulted in a higher ORR (94% vs. 67%) and median time to progression (63 vs. 22 months) in comparison to patients treated with CHOP alone. The addition of vincristine to cyclophosphamide-containing regimens is associated with risk of neuropathy in patients with WM. According to the NCCN Panel, since vincristine is associated with a high risk of peripheral neuropathy in patients with WM/LPL, regimens without vincristine (e.g., cyclophosphamide/dexamethasone/rituximab), may be considered if cyclophosphamide-based therapy is being considered.

Management of Bing-Neel Syndrome

Bing-Neel syndrome (BNS) is a rare manifestation of WM which results in the migration of lymphoplasmacytic cells (LPCs) to the central nervous system (CNS). Neurological deficits concerning BNS include but are not limited to headaches, seizures, cranial nerve palsies, weakness in limbs, and atypical neuropathy. Differential diagnosis of BNS includes hyperviscosity syndrome (HVS) with CNS manifestation which can present as new-onset of neurological symptoms such as headaches, visual impairment, and nose bleeds. HVS with CNS involvement can be differentiated from BNS by confirming an appropriate increase in serum IgM consistent with levels detected in those with WM, in conjunction with abnormal imaging and/or the presence of clonal B-cells in cerebrospinal fluid (CSF) or cerebral tissue. Diagnostic criteria and workup of BNS includes histology, CSF analysis, molecular testing, radiology, and blood analysis. Neuroimaging is encouraged in order to exclude differential diagnosis and aid in the selection of an appropriate site for biopsy. Two forms of CNS involvement (diffuse and tumoral) can be best evaluated after gadolinium administration and MRI. The diffuse form is associated with infiltration of lymphoid cells in the leptomeningeal sheath and perivascular space. This form presents as an enhancement or thickening of the meningeal sheath. Conversely, the tumoral form can be multifocal or unifocal and is found deep in the subcortical hemisphere. CNS lymphoma histology cannot be detected on an MRI and thus BNS cannot be excluded in the absence of MRI findings. Diagnostic criteria for BNS include histological biopsy of the cerebrum or meninges positive for clonal...
Waldenström Macroglobulinemia/
Lymphoplasmacytic Lymphoma

B cells with morphological evidence of lymphoplasmacytic lymphoma. Analysis of the CSF should include cell count and differentiation, morphological analysis, flow cytometry, and molecular testing to increase the sensitivity for detecting the presence of malignant B cells in the CSF. Analysis of CSF should be done routinely and should not precede the MRI to eliminate CSF sampling induced meningeal enhancement.106 Immunoglobulin gene rearrangement assays can also be performed to determine clonal characteristics of a B cell population. In addition, mutations in\textit{MYD88} with an amino acid point mutation L265P have been detected in 93-97\% of individuals with WM, using highly sensitive diagnostic techniques such as allele-specific PCR.106 Definitive diagnosis of BNS includes presence of clonal B-cells in CSF or within a tissue biopsy with a typical manifestation and presentation of systemic disease. Diagnosis can be confirmed with or without leptomeningeal enhancement or masses detected with an MRI. A probable diagnosis is made with abnormal MRI findings without evidence of clonal B cells in CSF or tissue biopsy.

If a person has abnormal test results but remains asymptomatic, their treatment will continue with routine observation. If a person is symptomatic, various systemic therapy options are recommended; preferred regimens include BTK inhibitors such as ibrutinib108 and zanubrutinib. Other recommended regimens include chemotherapy agents such as bendamustine, cytarabine, fludarabine, and methotrexate. Regimens useful in certain circumstances include intrathecal methotrexate and radiotherapy. BNS is a rare and usually a late manifestation in those with WM. It can develop when a person is in remission or less typically at the beginning of disease manifestation.109 When BNS develops later in the disease, it is usually associated with a worse prognosis.106,110
References

89. Ghobrial IM, Gertz MA, LaPlant B, et al. A phase II trial of the oral mTOR inhibitor everolimus (RAD001) in relapsed or refractory

