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Genome-scale functional genomics identify 
genes preferentially essential for multiple 
myeloma cells compared to other neoplasias

Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) 
neoplasia, has been driven by therapies that have limited applications 
beyond MM/PC neoplasias and do not target specific oncogenic mutations 
in MM. Instead, these agents target pathways critical for PC biology yet 
largely dispensable for malignant or normal cells of most other lineages. 
Here we systematically characterized the lineage-preferential molecular 
dependencies of MM through genome-scale clustered regularly interspaced 
short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of 
non-MM lines and identified 116 genes whose disruption more significantly 
affects MM cell fitness compared with other malignancies. These genes, 
some known, others not previously linked to MM, encode transcription 
factors, chromatin modifiers, endoplasmic reticulum components, 
metabolic regulators or signaling molecules. Most of these genes are not 
among the top amplified, overexpressed or mutated in MM. Functional 
genomics approaches thus define new therapeutic targets in MM not  
readily identifiable by standard genomic, transcriptional or epigenetic 
profiling analyses.

Multiple myeloma (MM), a plasma cell (PC) neoplasia and the second 
most common hematologic malignancy in the Western world, remains 
incurable despite major therapeutic progress during the past two dec-
ades. Much of this progress was achieved through use of proteasome 
inhibitors (PIs), thalidomide and its derivatives, anti-CD38 monoclonal 
antibodies and more recently BCMA-targeting therapies. These agents 
have limited therapeutic applications outside MM and do not target 
specific oncogenic mutations in MM cells, but perturb pathways that 
are critical for PC biology yet largely dispensable for most other normal 
or malignant cell types1,2. By contrast, established or investigational 
therapeutics that target mutated gene products and pathways of MM3 
generally yield short-lived clinical responses. Identification of genes 
essential for malignant or normal PCs, but dispensable for most other 
cell types, normal or malignant, could uncover putative therapeutic 
targets for MM. In this Article, therefore, we performed a systematic 
characterization of the molecular vulnerabilities of MM cells, compared 
with other types of neoplastic cells, through genome-scale clustered 

regularly interspaced short palindromic repeats (CRISPR) gene-editing 
screens. We hypothesized that these functional screens would not 
only ‘re-identify’ known MM/PC dependencies but also pinpoint addi-
tional genes whose preferential role in MM might not be readily pre-
dicted from patterns of molecular alterations in MM cells, including 
mutations, DNA copy number changes, structural rearrangements or 
overexpression.

Results
MM-preferential dependencies identified by CRISPR screens
We sought to identify genes whose loss of function (LOF) more effi-
ciently and consistently inhibits growth/survival of MM compared 
with non-MM cells. CRISPR/Cas9-based gene-editing screens were 
performed in 19 MM and 770 non-MM lines (Methods and ref. 4). Guide 
RNAs for genes more essential for MM are predicted to be eliminated 
more profoundly in MM than non-MM cells. We compared the patterns 
of gene essentiality in MM versus non-MM lines using CERES scores 
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stress sensing and response (for example, CNPY2 (ref. 6) and DDI2) 
or involved in transport of proteins from ER to the Golgi network (for 
example, ATP2C1 and SEC23B) are also preferentially essential for MM 
cells (Extended Data Fig. 1b,c).

Several genes preferentially essential for MM cells encode pro-
teins participating in proliferative/anti-apoptotic signaling cascades 
(Fig. 1b), including the serine/threonine kinase PIM2; IKBKB (IKK-β) 
and CHUK (IKK-α), which are upstream of NF-κB TFs; members of the 
IGF1R signaling cascade, including IGF1R itself, its downstream effector 
IRS1 and the peptidases FURIN and CPD (carboxypeptidase D), which 
regulate the cleavage of the IGF1R polypeptide to its mature form7; 
and IL6ST (gp130; a coreceptor for IL-6 and other cytokines). FGFR3 is 
also a MM-preferential dependency, probably reflecting MM cell lines 
with t(4;14) chromosomal translocation, which that results in FGFR3 
overexpression, and the highly infrequent nature of FGFR3 essential-
ity in other malignancies. Notably, STK11, a tumor suppressor in lung 
cancer, its positive regulator CAB39 (ref. 8) as well as SIK3, a downstream 
target of STK11 and an upstream regulator of MEF2C in other systems9, 
are preferentially required for MM cells. Additional signaling-related 
MM-preferential dependencies include the negative regulator of TGF-β 
signaling SMAD7; ARHGAP45 (HMHA1) and ROCK1, which are involved 
in regulation of cell adhesion and motility; and the CCM signaling 
complex members CCM2, KRIT1 (CCM1) and their downstream interac-
tor MAPK14. Finally, other genes preferentially essential for MM cells 
include those encoding the mitochondrial regulator of apoptosis BCL2 
and the mitochondrial E3 ligase MARCH5 (MARCHF5); the E3 ligases 
FBXO11 and FEM1B; and the nuclear transport proteins NUP37 and XPO4.

Molecular alterations of MM-preferential dependencies
We examined whether there are recurrent molecular alterations in 
the genes preferentially essential for MM cells (as summarized in  
Fig. 2). Among 834 genes overexpressed (log2 fold change (FC) >1.0, 
false discovery rate (FDR) <0.05) in MM versus non-MM cells lines (Can-
cer Cell Line Encyclopedia (CCLE), Fig. 3a), only 4% (29) are among the 
116 MM-preferential dependencies. Notably, six of these genes have 
the greatest difference in essentiality scores in MM versus non-MM 
cells. These include the lineage-defining TFs IRF4 and PRDM1, as well 
as POU2AF1, PIM2, MEF2C and CCND2. However, only a minority of 
MM-preferential dependencies are in the top 100–200 overexpressed 
genes when ranked by log2FC (Fig. 3b) or FDR (Fig. 2, circle 8) in MM 
versus other tumor types, and some MM-preferential dependencies 
are less highly expressed in MM lines (Fig. 3a and Extended Data Fig. 3). 
Similar observations were made when examining transcript levels for 
these genes in MM versus non-MM patient tumor samples (Extended 
Data Fig. 4a). Most MM-preferential dependencies are not overex-
pressed in MM versus normal PCs or more highly expressed in later 
versus earlier stages of myelomagenesis (Extended Data Fig. 4b) and 
do not consistently correlate with adverse patient outcome (Extended 
Data Fig. 4c), even under relaxed statistical criteria (Extended Data 
Fig. 4d,e). Moreover, most MM-preferential dependencies were not 
among the top overexpressed transcripts in MM cells cocultured with 
mesenchymal bone marrow stromal cells (BMSCs) (Fig. 2, circle 13), an 
interaction that attenuates MM cell responses to diverse therapies10–12.

Only 10/116 MM-preferential dependency genes were mutated 
in more than one of the MM cell lines (Extended Data Fig. 5a). Only 
two MM-preferential dependencies (FGFR3 and IRF4, mutated in 2% 

(Fig. 1a, Extended Data Fig. 1a,b and Supplementary Table 1), the ranks 
of genes according to their CERES scores in a given cell line (Extended 
Data Fig. 2a) or MaGECK ranks (Extended Data Fig. 2b). These com-
parisons, based on criteria outlined in Methods, identified genes with 
statistically significant differences in quantitative metrics of essential-
ity in MM versus non-MM lines, while filtering out those genes with a 
similar frequency of essentiality in MM versus non-MM, including ‘core 
essential’ genes required across all cancer cell lines. These analyses 
identified 116 MM-preferential dependencies (Fig. 1a, Extended Data 
Figs. 1 and 2a and Supplementary Table 1). In retrospective analyses 
of sequential releases of data from the Dependency Map (DepMap) 
program, which included increasing numbers of cell lines, the identity 
of MM-preferential dependencies was largely stable, with 72 genes 
identified in five consecutive releases. Additional cell lines in the later 
datasets allowed identification of >30 additional preferential depend-
encies (Extended Data Fig. 1a). These analyses were not influenced by 
the computational correction (for example, in CERES score calculation) 
of the gene-independent copy number effects of CRISPR gene-editing, 
because MAGeCK analyses without such correction provided concord-
ant results for these MM-preferential dependencies (Extended Data  
Fig. 2b and Supplementary Fig. 1). Collectively, the use of multiple 
analytical methods and versions of the DepMap data offers greater 
confidence in the identification of MM-preferential dependencies. 
While some of these genes can also be identified by short hairpin RNA 
(shRNA)-based screens, including IRF4 (ref. 5), PIM2, PRDM1, POU2AF1, 
NFKB1, RELB, IGF1R, IRS1, EP300 or TCF3 (Extended Data Fig. 2c,d), many 
others were identified only by gene-editing studies.

Approximately one-third of the genes preferentially essential 
for MM encode transcriptional and epigenetic regulators (Fig. 1b and 
Extended Data Fig. 1b–d). These include regulators of PC biology (for 
example, IRF4, PRDM1, XBP1, IKZF1 and IKZF3), members of the NF-κB 
pathway (for example, NFKB1 and RELB), or other genes involved in MM 
pathogenesis (for example, MAF). Several transcription factors (TFs) 
with underappreciated roles in MM, including MEF2C, CBFB, TCF3, IRF2, 
ZBTB38, ZNF296 and ZNF592, as well as transcriptional cofactors such 
as POU2AF1, CTBP1, TLE3 and ATF7IP were also identified. Disruption 
of several epigenetic enzymes had a more pronounced effect on MM 
compared with non-MM cell lines, including EP300, KDM5C, CARM1, 
DOT1L and HDAC1, as well as members of the BAF (SWI/SNF) com-
plex (ARID1A, SMARCD1 and ARID2), STAGA complex (TAF5L, TADA1, 
SUPT20H and SUPT7L), Mediator complex (MED23 and MED13L) and 
PRC1 (PCGF5, RING1 and PCGF1). MBNL1, a regulator of alternative 
splicing of pre-mRNAs, and several RNA binding proteins (CPEB4, 
RPRD2, RBM15 and ATXN2L) were also more essential in MM cell lines.

Consistent with the highly secretory nature of PCs, a large group 
of MM-preferential dependencies are involved in endoplasmic reticu-
lum (ER) function (Fig. 1b), including genes encoding ER membrane 
protein complexes mediating dislocation of misfolded proteins from 
the luminal side of the ER to the cytosol (for example, HERPUD1 and 
SEL1L); ER-specific E2 ubiquitin conjugating enzymes (for example, 
UBE2J1 and UBE2G2) or the E3 ligase SYVN1; enzymes required for 
N-glycan-dependent surveillance of quality control for luminal ER 
glycoproteins (for example, DPM1, PMM2, ALG3, ALG9, PGM3 and 
MPDU1) chaperones for misfolded ER proteins (for example, DNAJB11 
and DNAJBC3); the ER stress-sensor IRE1a (ERN1) and the target of 
its RNA processing activity, XBP1. Other molecules involved in ER 

Fig. 1 | Myeloma-preferential dependencies identified by genome-scale 
CRISPR-based gene-editing screens. a, Color-coded heat maps depict CERES 
scores, as a quantitative metric of dependence of human tumor cell lines to each 
gene in CRISPR/Cas9 gene-editing screens (AVANA sgRNA library). CERES scores 
for MM lines (n = 19) are depicted as a matrix (right side of graph) of cell lines  
(in columns) and genes (in rows). For non-MM lines (n = 770), data are depicted 
for each gene (row) in stacked bar graphs, which visualize the CERES score of each 
gene in descending order (from left to right). Black or dark blue signifies negative 

CERES scores compatible with pronounced sgRNA depletion of a given gene for 
a specific cell line. MM-preferential dependencies were identified on the basis of 
average CERES scores in MM cell lines ≤−0.2; difference in average CERES scores 
in MM versus non-MM lines ≤−0.2; two-sided limma t-test with adjusted P value 
(FDR) <0.05 for comparison of CERES scores; and additional criteria outlined 
in Methods. b, Pie chart of the distribution of MM-preferential dependencies to 
different functional groups, pathways or biological functions.
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of patients) are among the top 200 most frequently mutated genes in 
patients with newly diagnosed MM (Fig. 4a). Furthermore, the large 
majority of MM-preferential dependencies did not have higher fre-
quency of DNA copy number variation (CNV) gains, while some had 
a higher rate of CNV losses, in MM versus non-MM cell lines (CCLE;  
Fig. 4b,c). In patient-derived MM samples, MM-preferential dependen-
cies are not enriched within regions of frequent large CNV gains (for 
example, hyperdiploid chromosomes or chromosome 1q) or losses  
(Fig. 4d,e). In patient-derived MM samples, MM-preferential 

dependency genes did not exhibit a higher frequency of CNV gains  
(Fig. 4e) or DNA copy number (Fig. 4f ). Furthermore, only 5 
MM-preferential dependencies are among the top 200 genes with the 
highest frequency of CNV gains in patient samples (Extended Data Fig. 5b).  
Regarding structural variants (SVs) that result in focal CNVs and complex 
somatic events13, 45 regions, which harbor in total 475 genes evaluated 
in our CRISPR screens, were recently identified13 as hotspots for SVs that 
cause gain of chromosomal material. Of these 45 regions, 8 contain 9 of 
the 116 MM-preferential dependencies, namely IRF4 (and its neighboring 
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Fig. 2 | Integrated molecular profiling analyses for MM-preferential 
dependencies. Circos plot summarizing results of integrated molecular analyses 
for MM-preferential dependencies (more details in Figs. 3 and 4 and Extended 
Data Figs. 3–6) to examine whether most of them are among the top genes with 
most frequent molecular alterations (for example, mutations, DNA copy number 
gains or differential expression) in MM cells. Concentric circles depict for each 
gene: (1–2) fraction of MM (1; ‘ceres’) or non-MM (2; ‘ceresother’) lines with CERES 
scores ≤−0.4; (3) fraction of MM lines with DEMETER scores ≤−0.4 (‘dem’); (4–6) 
fraction of MM cell lines with non-synonymous mutations (4; ‘mut’; Extended 
Data Fig. 5), CNV loss (5; ‘cnvdel’) or CNV gain (6; ‘cnvamp’) (Extended Data Fig. 5); 
(7) fraction of MM cell lines with a super-accessible chromatin region annotated 
by closest proximity to the gene of interest (‘access’). Circles 8–12 summarize 
whether expression of a gene is higher in (8) MM versus non-MM cell lines of CCLE 

(‘ccle’; Fig. 3 and Extended Data Fig. 3); (9) tumor samples from patients with MM 
(CoMMpass study) versus non-MM patients (TCGA) (‘tcga’; Extended Data Fig. 4a);  
(10) MM patient samples versus normal PCs (‘mm’; Extended Data Fig. 4b);  
(11) plasma cell leukemia (PCL) or advanced MM versus early/newly diagnosed 
MM (‘pcl’; Extended Data Fig. 4b); (12) patients with shorter PFS (‘pfs’; Extended 
Data Fig. 4c); and (13) when MM cells are cocultured with BMSCs (‘bmsc’) in 
dataset GSE20540. For circles 8 and 9, transcripts with log2FC >1.0 and FDR <0.05 
are in green or orange, if they rank (based on FDR), respectively, in the top 1–50 or 
51–100 most upregulated genes (white depicts genes that did not satisfy all these 
criteria). Each of the circles 10–13 integrates several individual comparisons 
(Methods) and depicts (based on the color-coded scale) the fraction of these 
comparisons with upregulation by log2FC ≥1.0 and FDR ≤0.05 and ranking (based 
on FDR) in the top 100 most upregulated genes.
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DUSP22), POU2AF1, IRF2, PPCDC, CARM1, ZBTB38, PRDM1 and ZNF592 
(Extended Data Fig. 5c,d). Notably, two MM-preferential dependencies 
(MPDU1 and PFAS) are located in a SV loss hotspot for MM (specifically 
within 17p (ref. 13)). Overall, a limited number of MM-preferential depend-
encies may be located in regions with structural rearrangements or copy 
number alterations, but most MM-preferential dependencies do not rank 
among the top genes in terms of the frequency of these events in MM or 
their enrichment in MM compared with non-MM.

Chromatin regions such as ‘super-enhancers’, defined by dense 
TF binding, H3K27 acetylation and chromatin accessibility, facili-
tate gene expression critical for cell identity14. To determine if such 
gene regulatory features defined MM-preferential dependencies, we 
examined chromatin accessibility (assay for transposase-accessible 
chromatin using sequencing, ATAC-seq) in 12 MM cell lines with 
a focus on MM-preferentially essential genes. This identified on 
average five to six chromatin accessible regions within 100 kb of 
the MM-preferential dependency genes, and these were modestly 
enriched at super-accessible regions (Extended Data Fig. 6a) that were 
largely consistent across the 22 MM cell lines analyzed (Extended Data  
Fig. 6b). Examples of these chromatin accessible regions can be found 
at PRDM1, UBE2J1 and IRF4; in regions of the DUSP22 gene that may regu-
late nearby IRF4; and in POU2AF1 (Extended Data Fig. 6c–f). While 55/116 
MM-preferential dependencies were ≤100 kb from a highly accessible 
region, there were over 4,000 super-accessible regions covering over 
3,400 genes, and therefore MM-preferential dependencies could not 
be readily identified by chromatin accessibility alone.

Collectively, these data (Fig. 2) indicate that many MM-preferential 
dependencies identified by CRISPR gene-editing screens are not among 
the top recurrently mutated, amplified or aberrantly expressed genes in 
MM. This observation is concordant with data on preferential depend-
encies in other malignancies, such as ER + breast, renal or colon cancer, 
melanoma and acute myeloid leukemia (Supplementary Figs. 2–6).

MM encompasses several subgroups defined by molecular fea-
tures, such as chromosomal translocations involving immunoglobulin 
gene enhancers or mutations/DNA copy number events in key onco-
genes or tumor suppressors. MM lines with translocations targeting 
CCND1, CCND2, CCND3, MAF and FGFR3 or with KRAS or NRAS mutations 
tend to be dependent on these respective genes. Hierarchical cluster-
ing of MM cell lines according to the essentiality scores for preferential 
dependencies revealed that four of five MM lines with MAF rearrange-
ment and another line with ectopic MAF overexpression were in the 

same branch of the dendrogram, while four lines with CCND1 rearrange-
ment were in adjacent branches. Overall, however, clustering of lines 
based on their essentiality scores for MM-preferential dependencies 
as a group does not distinguish molecular subtypes, perhaps reflecting 
the limited numbers of lines from each MM subtype (Extended Data  
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the FDR-based ranking of differentially expressed genes for Fig. 2). Gene symbols 
are depicted for the minority of top upregulated genes that represent MM-
preferential dependencies. Gene expression data for a were accessed from the 
initial CCLE portal, with concordant observations based on subsequent releases 
of these data through DepMap portal.
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Fig. 6g) and a need for gene-editing studies in larger panels of MM lines 
in order to better define subtype-specific MM dependencies.

MM dependencies: shared or distinct roles in other cancers
The 116 genes we identified are preferentially, but not necessarily 
exclusively, important for MM cells. Several of them are recurrently 

essential in other neoplasias, for example, EP300, MARCHF5, CBFB, 
MBNL1, DOT1L or FURIN in leukemia (Extended Data Figs. 7 and 8a–e), 
while IRF4 is important for lymphoma and a subset of melanoma lines 
(Extended Data Fig. 8a). Notably, though, the essentiality scores for 
the MM-preferential dependencies define a tight cluster of MM lines 
distinct from all non-MM, including other hematologic, cell lines in 
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Fig. 4 | Landscape of single nucleotide variants and DNA copy number 
variants for MM-preferentially essential genes. a, Frequency of non-
synonymous single nucleotide variants (SNVs) in N = 940 samples from patients 
with MM (CoMMpass study, IA17 release). MM-preferential dependencies  
(as defined in Fig. 1a and Supplementary Table 1) are highlighted in blue.  
b,c, Ranking of MM-preferential dependencies and other genes in terms of 
statistical significance (FDR and two-sided Fisher’s test) of the frequency of 
CNV gains (b) or losses (c) in MM (n = 33) versus non-MM (n = 1721) lines of CCLE 
panel (based on data and annotation from DepMap 22Q1 release, concordant 
observations with other releases). d, Frequency of MM-preferential dependencies 

(MM-dep; red) and other (gray) genes that fall in sites of common CNV gains, 
including hyperdiploid (HD) chromosomes (for example, 3, 5, 7, 9, 11, 15, 19 and 
21) in MM. e, Frequency of CNV gains in CoMMpass samples for MM-preferential 
dependencies and all other genes stratified by hyperdiploid (HD) chromosomes, 
chromosome 1q and other. f, Average DNA copy number in CoMMpass samples for 
MM-preferential dependencies versus other genes stratified by HD, chromosome 
1q, other, chromosome 1p, chromosome 17p and chromosome 13q. P values are 
from two-sided Fisher’s exact test (d) or two-sided Mann–Whitney U test (e and f). 
Panels e and f evaluated N = 932 patient samples for 19,054 genes with DNA copy 
number data available in the CoMMpass study (IA15 release).
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Fig. 5 | CERES scores for reported substrates or targets for thalidomide 
derivatives. a, Heat maps depict CERES scores for known/proposed substrates 
or targets of thalidomide derivatives. Results as depicted as a matrix for N = 19 
MM cell lines (right side of graph) and stacked bar plots for N = 770 non-MM cell 
lines (with format and color coding similar to other figures, for example, Fig. 1a).  
Gene symbols (for N = 39 genes) are highlighted in red for MM-preferential 
dependencies whose protein products are known (IKZF1 and IKZF3) or recently 
proposed (ARID2) neosubstrates for thalidomide derivatives; black for ‘core 
essential’ genes; blue for genes that are not ‘core essential’ or MM-preferentially 
essential and have CERES scores <−0.4 in ≥2 MM lines tested; and gray or orange 

for other known or reported CRBN neosubstrates/targets of thalidomide 
derivatives. b, Dot plot depicting for each gene the −log10FDR (Limma t-test) for 
comparison of CERES scores in MM (N = 19 cell lines) versus non-MM (N = 768 
cell lines) (y axis) versus the difference in average CERES scores in MM versus 
non-MM cell lines (x axis) (N = 18,119 genes, also see Supplementary Table 1). 
Genes whose protein products are known or proposed targets/neosubstrates of 
thalidomide or its derivatives are highlighted in red dots and those genes (IKZF3, 
IKZF1 and ARID2) that also meet the criteria for MM-preferential dependencies 
are highlighted by their symbols.
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the t-distributed stochastic neighbor embedding (t-SNE) clustering 
analysis (Extended Data Fig. 8b,c). Applying in other neoplasias across 
the DepMap dataset the criteria we used to define preferential depend-
encies for MM, we identified genes previously known to be essential for 
tumors of different lineages including CTNNB1 for colorectal or ESR1, 
FOXA1 and SPDEF for ER + breast cancer (Supplementary Figs. 2–6). 
However, in general, non-MM tumor types had fewer preferentially 
essential genes, even those with gene-editing screens in higher numbers 
of cell lines than MM (Extended Data Fig. 8a,d).

The high number of MM-preferential dependencies might not 
reflect solely biological differences between malignant hematopoietic 
and solid tumor cells but a specific set of vulnerabilities associated with 
PC biology. Consistent with this notion, 68 MM-preferential dependen-
cies were more essential to MM cells than to non-MM blood cancer cell 
lines (difference in average CERES scores ≤−0.2, FDR <0.05; Extended 
Data Fig. 8e). Gene editing with a subgenome-scale library that included 
single guide RNAs (sgRNAs) for 89 MM-preferential dependencies was 
performed in two cell lines representing Waldenström’s macroglobu-
linemia (WM), a lymphoplasmacytic lymphoma, which is related to MM 
but also has several distinct biological and genetic features. Disruption 
of 28 MM-preferential dependency genes had no effect on either WM 
cell line, and 40 additional MM-preferential dependencies were not 
essential in one of the WM lines (Supplementary Fig. 7a–c), highlight-
ing the distinct pattern of genetic vulnerabilities of MM, even when 
compared with a closely related malignancy.

Some genes do not meet all criteria for designation as preferential 
dependencies in MM when compared with all other non-MM (heme or 
solid) tumor lines but are more essential in MM versus B-cell lymphoma 
or in MM versus solid tumor lines (Extended Data Fig. 8f–j). Several of 
these genes function in similar pathways as some MM-preferentially 
essential genes, such as the ER-associated degradation (ERAD)-related 
genes ERLEC1, STT3A, UFL1 and UFM1 that are more essential in MM 
versus B-cell lymphomas (Extended Data Fig. 8i,j). IKZF1, IKZF3 or 
BCL2, which can be therapeutically targeted, are more essential for 
MM compared with all non-MM lines, but have a similar importance 
for B-cell lymphomas. Conversely, some genes such as PIK3CA are 
more essential for MM versus B-cell lymphomas, but are similarly 
critical for all other non-MM cell lines (Extended Data Fig. 8i,j) and 
have not yet proved to be clinically actionable in MM. These examples 
highlight that defining differential dependencies for MM cells may 
provide distinct information depending on the comparator group, for 
example, all non-MM tumor cells or specific hematologic malignancies: 
the latter comparisons inform about potential biological differences 
in MM versus the respective neoplasias and warrant studies in larger 
cell line panels.

Further highlighting their distinct roles in MM, several 
MM-preferential dependencies function as tumor suppressors in others 
diseases, for example, FBXO11 (ref. 15) or PRDM1 (ref. 16) in lymphoma; 
or STK11, CAB39 and TSC2 in many cancers17. This seemingly paradoxical 
observation may relate to the biology of PCs and the functional rela-
tionships of these genes with other MM-preferential dependencies. For 
instance, CERES scores for TSC2 and several other negative regulators 
of mTORC1 signaling (for example, DDIT4, DEPDC5 and NPRL2) exhibit 
positive correlation in MM and other lines (Supplementary Fig. 7d–g), 
concordant with the TSC1/2 complex as negative mTORC1 regulator 
in MM cells. RHEB, direct downstream target of TSC1/2 and positive 
regulator of mTORC1, has higher CERES scores in MM versus other cell 
lines (Supplementary Fig. 7h,i). Therefore, disruption of the TSC1/2 
complex leading to hyperactive mTORC1 can drive growth of other 
cell types but also leads to increased ER stress18, to which MM cells are 
particularly susceptible. Recent studies in leukemia9 reported that 
STK11 activates SIK3 and SIK2, which in turn activate MEF2C, another 
gene preferentially required by MM (Supplementary Fig. 7j,k). These 
examples suggest that cell lineage is critical for interpretation of gene 
essentiality screens.

Preferential dependencies previously implicated in MM
Several MM-preferential dependencies (IRF4 (ref. 5), MAF, CCND2, 
IKZF3, IKZF1 and NFKB) have known roles in MM, but limited, if any, 
prior formal evaluation of their preferential essentiality in MM com-
pared with other cancers. We examined the patterns of essentiality of 
genes targeted by IRF4 (ref. 5) (Supplementary Fig. 7l and Extended 
Data Fig. 9a) or IKZF1 and IKZF3 (ref. 19) (Extended Data Fig. 9b) in MM. 
Each of these TFs regulates in MM cells genes that represent distinct 
clusters, including genes essential across all tumor types; genes with 
recurrent proliferative, anti-apoptotic or oncogenic roles across many 
cancers (for example, regulation of KRAS by IRF4); and genes that indi-
vidually are not required for growth of MM or other cancer cell lines. 
Notably, several putative IRF4 targets (for example, PRDM1, PIM2, BCL2, 
UBE2J1 and CCDC134) are themselves MM-preferential dependencies 
(Extended Data Fig. 9a, based on data from Figs. 1 and 2), which may 
explain why IRF4 disruption is so disadvantageous to MM cell fitness.

MM-preferential dependencies also include targets for anti-MM 
therapies, including the thalidomide derivative targets IKZF3 and 
IKZF1 (refs. 20,21) and a recently identified CRBN neosubstrate ARID2 
(ref. 22), but not other CRBN neosubstrates23–32 (Fig. 5). Genes required 
for MM cell fitness also include those encoding molecules mediating 
the anti-MM activity of PIs such as members of the NF-κB pathway33 
and regulators of ER-associated protein degradation. These results 
are concordant with the fact that the clinical effects of thalidomide 

Fig. 6 | Biological role of POU2AF1 in MM cells. a,b, Relative number of 
viable cells after Doxy-inducible CRISPR interference (CRISPRi) (KMS11 cells, 
11 days after sgRNA transduction) (a) or CRISPR activation (CRISPRa) (LP-1 
cells, 19 days after sgRNA transduction) (b) of POU2AF1 versus control OR 
genes. CTG assays, N = 8 (a) or N = 6 (b) independent replicate cell cultures 
per condition; mean ± standard error of the mean (s.e.m.), one-way analysis of 
variance (ANOVA) and Tukey’s post-hoc test (detailed results in source data), 
P < 0.001 for each POU2AF1 sgRNA versus OR gene sgRNA). c–f, Transcriptional 
signature of POU2AF1 overexpression in LP1 MM cells: volcano plot of transcripts 
differentially expressed in LP1 cells with CRISPR activation of POU2AF1 versus 
OR controls (blue line denotes FDR = 0.05) (c); HLA class II transcript levels 
with POU2AF1 activation versus control (d); TF DNA-binding motifs enriched 
in sites of chromatin binding of POU2AF1, where top ten most statistically 
significant motifs (in black) include POU2AF1 partner Oct2 (POU2F2), whereas 
others include motifs for TFs relevant to MM, such as Myc, PU.1-IRF, NF-κB, 
PRDM1 and CREB5, which is overexpressed with POU2AF1 activation (e); GSEA 
plots examining the transcriptional signature of POU2AF1 activation identify 
enrichment for genes previously determined as targets of IRF4, IKZF3, IKZF1 
or Myc (P < 0.001, for each plot) (f). g–l, POU2AF1 binding motifs are enriched 
in chromatin accessible regions near select MM-preferential dependencies: 

ATAC-seq signal at POU2AF1 binding motifs in 12 MM DepMap cell lines (top), 
with the POU2AF1 consensus binding motif shown (bottom) (g); MM-preferential 
dependencies with significant enrichment of POU2AF1 binding motifs in 
chromatin accessible regions (odds ratio of enrichment lines denoting 95% 
confidence intervals shown, Fisher’s exact test) (h); correlation of transcript 
levels in N = 768 newly diagnosed primary MM specimens (CoMMpass study, 
IA15 release) for POU2AF1 expression with genes downregulated (down), not 
significantly changed (none) or upregulated (up) by CRISPR activation of 
POU2AF1 (i); correlation of POU2AF1 expression with transcript levels of  
MM-preferential dependencies (MM-Dep; N = 116 genes) or all other N = 55,092 
genes (two-sided t-test for i and j; box plots denote median, lower/upper 
quartiles, with whiskers extending up to 1.5 times the interquartile range of the 
box) (j); gene expression correlation between POU2AF1 (x axis) and IRF2 (y axis) 
in N = 768 patient samples (CoMMpass study IA15 release), with significance 
determined by edgeR and FDR corrected), and gene expression measured 
in fragments per kilobase per million reads (FPKM) (k); genome plot of IRF2 
showing MM chromatin accessible regions (MM peaks), POU2AF1 consensus 
binding motifs (POU2AF1) with motifs overlapping accessible chromatin (red), 
and a composite ATAC profile of 12 MM lines (l).
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derivatives and PIs are mostly limited to PC malignancies. HDAC1 and 
BCL2 are also MM-preferential dependencies, consistent with the 
activity of inhibitors against these targets in clinical trials. IGF1R and 
members/regulators of its pathway (for example, IRS1 and FURIN7) 
are also MM-preferential dependencies, consistent with the greater 
preclinical activity of IGF1R inhibitors against MM compared with other 
cell types34,35. These data suggest that other genes identified from this 
study may have therapeutic relevance.

In vitro studies supporting CRISPR screen results
MM lines harboring doxycycline (Doxy)-inducible SpCas9 were trans-
duced with sgRNAs directed against MM-preferential dependencies 
including PIM2, MEF2C, TCF3 and DOT1L. Doxy treatment led to sig-
nificant depletion of MM cells transduced with these sgRNAs (Sup-
plementary Fig. 8a,b) compared with control sgRNAs for olfactory 
receptor (OR) genes, which are not expressed in MM36. As an orthogo-
nal validation of the gene disruption screening results, treatment of 
MM lines with antagonists for the methyltransferase CARM1 (PRMT4)  
(refs. 37,38), the CBFB TF39, the SIK kinases (including SIK3) or PIM 
kinases (including PIM2) decreased the relative viability of MM cells 
(Supplementary Fig. 8c–e). Additional validation of genome-scale 
CRISPR studies was offered by data from pharmacological screens 
(Supplementary Fig. 8f,g). Inhibitors against the products of several 
genes preferentially essential for MM were more active against MM lines 
compared to lines from solid tumors or other hematologic malignan-
cies. These included ‘positive controls’ such as lenalidomide (target-
ing IZKF1 and IZKF3), bortezomib (targeting ER function or NF-κB); 
and inhibitors for BCL-2, IKK1/IKK2 (CHUK/IKBKB), IGF1R, HDAC1 and 
NAMPT (Supplementary Fig. 8f,g).

POU2AF1, an essential transcriptional cofactor for MM cells
The roles for many MM-preferentially essential genes were previously 
only modestly explored. One example is POU2AF1, encoding the OCA-B 
transcriptional cofactor. Prior studies in MM suggested that POU2AF1 
regulates expression of BCMA (TNFRSF17) (ref. 40); TCR-engineered 
T cells recognizing POU2AF1 peptides can have therapeutic applica-
tions41; while elevated POU2AF1 protein levels correlates with adverse 
prognosis42. However, the role of POU2AF1 as a dependency in MM has 
been understudied. POU2AF1 was the most preferentially essential 
gene encoding a transcriptional cofactor in MM (Fig. 1) and was also 
essential for several MM cell lines in shRNA studies (Extended Data  
Fig. 2c,d). Depletion of POU2AF1 protein levels through Doxy-inducible 
CRISPR interference (Extended Data Fig. 10a) decreased MM cell growth 
(Fig. 6a), while CRISPR-based activation of POU2AF1 (Extended Data 
Fig. 10b) stimulated growth of LP-1 MM cells (Fig. 6b and Extended 
Data Fig. 10c). POU2AF1 overexpression also triggered upregulation 
(Fig. 6c) of other MM-preferential dependencies (for example, PRDM1, 
SUPT7L and UBE2G2), TSC1, KRAS and other genes implicated in the 

pathogenesis of MM or other cancers (for example, FGFR3, RUNX2  
(ref. 43), SMO, MEF2D and PCGF2); and downregulation of CDKN1C  
(Fig. 6c), encoding a cyclin-dependent kinase inhibitor. POU2AF1 
overexpression also led to downregulation of MHC class II molecules 
(Fig. 6d) and their transcriptional activator CIITA (Fig. 6c), suggesting 
potential roles of POU2AF1 in immune evasion.

ATAC-seq indicated that chromatin surrounding the POU2AF1 
locus was highly accessible in MM cells (Extended Data Fig. 6e), 
concordant with its consistent expression (Extended Data Figs. 3  
and 4a). Motif analysis of data of chromatin immunoprecipitation 
followed by sequencing for POU2AF1 (GSE79480) identified overlap 
with DNA-binding motifs for POU family TFs such as OCT2 (POU2F2), 
the binding partner of POU2AF1, members of the ETS family and other 
TFs with roles in MM including c-MYC, IRF4, NF-κB, PRDM1 and RUNX2  
(Fig. 6e), suggesting that POU2AF1 may act as a cofactor for these 
factors. In further support of this notion, gene set enrichment analy-
ses (GSEAs) showed that the transcriptional signature of POU2AF1 
overexpression is enriched for genes regulated by MM TFs such IRF4, 
IKZF1, IKZF3 and MYC (Fig. 6f). Motifs associated with POU2AF1 bind-
ing are also enriched near the transcriptional start site of several 
MM-preferential dependencies including POU2AF1 itself, BCL2, IRF2 
and IRS1 (Fig. 6g,h). Genes correlating with POU2AF1 expression in 
MM cells across 768 patients with newly diagnosed MM were enriched 
among the genes upregulated by CRISPR activation of POU2AF1 in the 
LP1 MM cell line, suggesting that many are bona fide POU2AF1 targets 
(Fig. 6i). POU2AF1 expression was also correlated with expression of 
the 116 MM-preferential dependencies in MM patient samples (Fig. 6j), 
as exemplified by IRF2 (Fig. 6k), with multiple POU2AF1 binding sites 
in the accessible chromatin regions of this gene (Fig. 6l). POU2AF1, like 
IRF4, may be critical for MM cell fitness due to its ability to stimulate 
expression of other genes essential for MM proliferation and survival.

ER genes preferentially essential for MM
ERAD for unfolded proteins represents an important biological vul-
nerability for MM cells, given the proteostatic stress associated with 
immunoglobulin production2,44. Multiple genes preferentially essential 
for MM encode previously underappreciated components of the ERAD 
system (Fig. 1 and Extended Data Fig. 1b,d). Doxy-inducible CRISPR 
knockout (KO) of UBE2J1 (Fig. 7a and Extended Data Fig. 10d), SYVN1 
(Fig. 7b) or HERPUD1 (Fig. 7c) validated observations from gene-editing 
screens in the respective cell lines (Fig. 1). Accordingly, HERPUD1 KO 
affected viability of KMS18 cells, but not OCI-My5 cells (Fig. 7b). Moreo-
ver, in a competition assay of KMS18 cells harboring Doxy-inducible 
SpCas9 and sgRNA against UBE2J1 or an OR (OR2D12) negative control, 
UBE2J1 KO cells were outcompeted by control cells only in the presence 
of Doxy (Fig. 7d). While there are no small molecule inhibitors for UBE2J1 
or HERPUD1, LS-102, an inhibitor of SYVN1, inhibited growth of MM 
cell lines at micromolar concentrations (Fig. 7e). Consistent with the 

Fig. 7 | Biological role of UBE2J1 and other ER-associated MM-preferential 
dependencies. a–d, Doxy-inducible CRISPR KO of ER-associated MM-
preferential dependencies or control OR genes in KMS18 (a, c and d) or OCI-My5 
(b) MM cells. Cells were cultured with or without Doxy (14 days in a–c; 14 or 
28 days in d). In a–c, cell viability was evaluated by CTG (mean ± s.e.m.), one-way 
ANOVA and Tukey’s post-hoc tests (see source data) at P < 0.001 for each ER 
gene sgRNA (except HERPUD1 in b) versus each of the OR sgRNAs; 80, 32 and 
40 independent replicate cell cultures/sgRNA in a–c, respectively. In d, KMS18 
cells with Doxy-inducible SpCas9 and transduced with sgRNA against UBE2J1 
or OR2D12 were mixed at a 9:1 ratio, respectively, in a competition assay. INDEL 
analyses (at days 14 and 28) calculated the relative percentage of cells with 
CRISPR-induced frameshift mutations of UBE2J1. e, In vitro treatment with SYVN1 
inhibitor LS-102 (5 days; vertical dotted line represents reported in vitro half 
maximal inhibitory concentration (IC50) for inhibition of this target). CTG; mean; 
biological replicates N = 30 independent replicate cell cultures for drug-free 
controls in both lines, n = 3 or 4 independent replicate cell cultures, respectively, 
in L363 and KMS27 MM cells for each drug dose; nonlinear curve fitting with 

variable slope (four parameters). f, Immunobloting for BiP, a marker of ER stress, 
in KMS18 cells with Doxy-inducible CRISPR KO of UBE2J1 or control OR gene, 
cultured with versus without Doxy. g,h, In vitro bortezomib treatment (24 h) 
of KMS18 (g) or OPM-2 (h) cells with Doxy-inducible CRISPR KO of HERPUD1 or 
control OR genes. (CTG; mean ± s.e.m.; n = 8 independent replicate cell cultures 
for drug-free controls and n = 4 independent replicate cell cultures per drug 
dose for each KO; two-way ANOVA (P < 0.001); detailed results of Tukey post-
hoc tests in source data). i, Schematic figure of ER-associated dependencies. 
MM-preferential ER dependencies (blue symbols) involve ER membrane protein 
complexes mediating dislocation of misfolded ER proteins to cytosol (for 
example HERPUD1 and SEL1L) and associated ER-specific E2/E3 enzymes (SYVN1, 
UBE2J1 and UBE2G2); enzymes (for example, DPM1, ALG3 and ALG9) required for 
N-glycan-dependent surveillance of quality control for luminal ER glycoproteins; 
chaperones (for example, DNAJB11 and DNAJBC3) for BiP complexes with 
misfolded proteins; and the known ER stress-sensor IRE1a (ERN1) and its 
downstream TF XBP1.
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role of UBE2J1 in ERAD, UBE2J1 KO led to induction of the heat shock 
protein BiP, a marker of ER stress (Fig. 7f). In a reanalysis of a retroviral 
gene-trap mutagenesis screen and a gene-editing screen for genes 
involved in ERAD regulation in KBM7 haploid cells45, UBE2J1 was one of 
the top hits, together with its partners in the ER dislocon (HERPUD1 and 
SYVN), that facilitates translocation of misfolded proteins from the ER 
lumen to the cytoplasm (Extended Data Fig. 10e). Given that PIs induce 
ER stress in MM, we examined whether disruption of ER-associated 
genes preferentially important for MM could enhance response to PIs. 
In support of this notion, inducible KO of HEPRUD1 further decreased 
viability of MM cell lines treated with bortezomib (Fig. 7g,h), while KO 
of SYVN1 had a more modest effect (Extended Data Fig. 10f). The vari-
able impact that perturbation of different ER-associated genes has on 
MM cell response to proteasome inhibition may reflect diverse roles 
of these proteins in ER function. Collectively, these data support an 
important role in MM cells for a series of ER-associated genes (Fig. 7i)  
that may represent additional targets to enhance efficacy of PIs.

The patterns of essentiality of all ER-associated genes in MM ver-
sus other cancers (Extended Data Fig. 10g) reveal that a minority are 
‘core essential’ genes (Extended Data Fig. 10g, top); and a large pro-
portion are essential for few, if any, cancer cell lines (Extended Data  
Fig. 10g, bottom). Additionally, we identified ER-associated genes 
that do not meet all criteria for MM-preferential dependencies and 
are not broadly essential across all cancers, but are essential for many 
MM cell lines (Extended Data Fig. 10g,h). These latter genes encode 
for ER proteins involved in dislocation of misfolded ER proteins to the 
cytosol (AUP1, AMFR and RNF139); or in N-glycan-dependent quality 
control for luminal ER glycoproteins (ALG12, ALG6 and ALG8): these 
additional ER-associated genes may also represent candidate thera-
peutic targets for MM.

In vivo studies confirm role of MM-preferential dependencies
We examined if MM-preferential dependencies identified in vitro 
were also essential for MM cells grown in vivo within a bone marrow 
(BM)-like scaffold system engineered to simulate the human marrow 
microenvironment46 and enhance MM growth. Bicalcium phosphate 
scaffolds were populated ex vivo with primary human mesenchymal 
BMSCs under conditions favoring osteogenic differentiation (ref. 46 
and Supplementary Fig. 8h). Scaffolds were subcutaneously implanted 
into NOD-scid gamma (NSG) mice and injected with KMS11 or XG7 
SpCas9+ MM cell lines transduced with a focused sgRNA library tar-
geting 89 MM-preferentially essential genes, genes with broad roles 
across many tumor types and controls. Analysis of sgRNA distribution 
of tumors recovered from the mice revealed that a large majority of 
MM-preferential dependencies identified in vitro were also essen-
tial for MM cells in vivo. For example, among the 57 MM-preferential 
dependencies with CERES scores ≤−0.4 in KMS11 cells in vitro, their 
large majority exhibited depletion of their cognate sgRNAs in vivo 
(average log2FC ≤−1.0 and depletion of three to four of four sgRNAs; 
Fig. 8a,b). These included genes encoding TFs/cofactors (for exam-
ple, IRF4, PRDM1, POU2AF1, RELB and MAF); epigenetic regulators (for 
example, CARM1); kinases upstream of NF-κB (CHUK and IKBKB); and ER 

regulators. Core-essential genes and broad-spectrum oncogenes essen-
tial in vitro (MYC, CFLAR and CDK7 on both lines; KRAS in XG7) remained 
essential in vivo; while PTEN KO cells were enriched consistent with the 
tumor suppressive role of this gene (Fig. 8c). Overall, the large majority 
of MM-preferential dependencies examined were essential for MM cell 
growth in vivo of either KMS11 or XG7 cells; and most were essential 
for both lines (Fig. 8c). KO of several genes had a greater effect in vivo 
than in vitro. For instance, BCL2, the ER-associated genes HEPRUD1, 
ALG9 and DPM1; and the TF TCF3 (a gene examined with individual 
sgRNAs in another MM line in vitro; Supplementary Fig. 8) had in vitro 
CERES scores in the range of or greater than −0.40 in KMS11 cells, but 
sgRNAs for these genes were depleted in the in vivo setting (Fig. 8a). 
These observations indicate that most MM-preferential dependencies 
identified in vitro are also required when MM cells interact in vivo with 
a highly supportive microenvironment.

Discussion
Recent advances in MM treatment have relied on therapeutics that are 
primarily effective against PC neoplasias. This preferential anti-MM 
activity could not have been readily predicted by the genomic charac-
terization of MM cells, as these agents do not target mutated oncogenes 
or the malignant state of MM PCs but rather pathways critical for PC 
biology. This was originally recognized for thalidomide derivatives and 
PIs1 and also applies for subsequently developed therapies targeting 
the preferentially high expression of CD38, BCMA or GPRC5D on PCs, 
malignant and normal. Notably, some of the most successful antican-
cer therapies also target both malignant and normal cells of lineages 
dispensable for survival of adult patients, sparing other tissues and 
avoiding major life-threatening complications. Such lineage-specific 
therapies include rituximab for lymphomas, hormonal therapies for 
prostate or breast cancer or radioactive iodine for thyroid carcinoma. 
The profound impact of lineage-specific treatments in MM and beyond 
prompted us to functionally ascertain, through genome-scale CRISPR 
screens, genes that are preferentially essential for MM compared with 
the overwhelming majority of neoplasias from other lineages.

Reassuringly, several MM-preferential dependencies identified 
in this study are known regulators of MM biology (for example, IRF4) 
or targets/mediators for therapies with preferential clinical activity 
against MM/PC neoplasias. Among diverse proposed mediators of 
anti-MM activity of thalidomide derivatives, IKZF3, IKZF1 and ARID2 
emerged as MM-preferential dependencies. Prior work primarily cen-
tered on IKZF1 as the critical target of thalidomide derivatives, but 
our present study identifies more pronounced and recurrent MM 
cell dependence on IKZF3. ARID2 is a CRBN neosubstrate with poma-
lidomide, but not lenalidomide, treatment22. Our observations sug-
gest that additional emphasis is warranted on IKZF3, ARID2 and their 
downstream effects.

In terms of the pronounced activity of PIs against PC neoplasias 
(versus limited activity against most other tumor types), the precise 
mechanistic contribution of NF-κB inhibition versus ER stress had 
remained an unanswered question. Our study points to a contribu-
tion of both pathways, because MM cells are, compared with other 

Fig. 8 | In vivo studies to validate the role of key examples of MM-preferential 
dependencies identified in vitro. a, Results from study of KMS11 cells in the 
‘humanized’ BM-like scaffold-based in vivo model using a single-gene CRISPR KO 
system. The graph depicts, for each gene (N = 88 MM-preferential dependencies 
with in vitro CERES scores of <0.4 in KMS11 cells), the log2FC of averaged read 
counts for each of their sgRNAs (blue dots for individual values; red bar for 
average). The region highlighted in gray delineates the upper and lower limit of 
the 95% confidence intervals for log2FC of averaged read counts for sgRNAs of 
OR genes as controls. Genes for which their sgRNA log2FC are outside the 95% 
confidence intervals for the OR gene sgRNAs were considered to have depletion 
or enrichment. Gene symbols for MM-preferential dependencies with CERES 
scores <−0.4 in KMS11 in vitro are indicated in dark blue versus light blue if these 

genes did versus did not exhibit, respectively, depletion of three to four out of 
four sgRNAs per gene in vivo. MM-preferential dependencies with CERES  
scores >−0.4 in KMS11 in vitro are indicated in dark green versus light green, if 
these genes did versus did not exhibit, respectively, depletion of three to four 
sgRNAs per gene in vivo. b, Average log2FC of read counts for sgRNAs of N = 184 
genes (four sgRNAs per gene) in KMS11 cells in the in vivo ‘humanized’ BM-like 
scaffold-based model (N = 5 mice) (y axis) and their respective CERES score in 
KMS11 cell line in vitro (x axis). c, Scatter plot of average log2FC of read counts for 
sgRNAs of genes examined through subgenome-scale focused CRISPR KO study 
of the KMS11 cells (N = 5 mice) (y axis) versus XG-7 cells (N = 8 mice) (x axis) in the 
in vivo ‘humanized’ BM-like scaffold-based model.
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neoplasias, preferentially dependent on both NF-κB pathway genes and 
ER regulators. The latter include molecules with previously underap-
preciated roles in MM, including the ER-resident E2 ligase UBE2J1 and 
E3 ligase SYVN1; or their ER-to-cytosol retrotranslocation partners 
SEL1L and HERPUD1, which contribute to the quality control system 
for misfolded proteins in the ER. These proteins and their respective 
complexes may represent therapeutic targets in MM.

The identification of BCL2, HDAC1 and PIM2 as MM-preferential 
dependencies is also notable, given that BCL2 inhibitors have promis-
ing clinical activity in a subset of MM patients47; and broad-spectrum 
inhibitors of class I HDACs48 or PIM kinases49 have exhibited activity in 
clinical studies in MM, but only limited clinical efficacy in other settings.

By this logic, other MM-preferential dependencies could repre-
sent putative therapeutic targets. Many transcriptional/epigenetic 
regulators identified in this study have received limited attention as 
therapeutic targets in MM. Others (for example, DOT1L (ref. 50) or 
CARM1 (ref. 51)) have been targeted therapeutically in preclinical MM 
studies that, however, did not comprehensively compare the role of 
these targets in MM versus other cancers. A translational implication 
of our study is that selective direct inhibitors of the expression of 
MM-preferential dependencies or function of their product(s) merit 
preclinical and clinical evaluation in MM, without excluding possible 
applications in other neoplasias. Our data do not imply MM-‘exclusive’ 
essentiality for these genes, as several are also recurrent/preferential 
dependencies for other malignancies. However, a large fraction of 
MM-preferential dependencies do not exhibit a similar role in other 
hematologic neoplasias and some were even reported as tumor 
suppressors in other lymphoid malignancies (for example, FBXO11  
(ref. 52) and PRDM1 (ref. 16)) or solid tumors (for example, STK11 and 
TSC2). Examining other neoplasias, beyond MM, for their respec-
tive preferential dependencies, identified some known examples of 
dependencies related to the respective cell of origin, but overall fewer 
genes per disease compared with those identified for MM. This may 
reflect the highly distinct molecular network that is essential for the 
MM cells and their identity as PCs, specifically their status as highly 
secretory cells, which require high levels of ER function, as well as 
distinct transcriptional, epigenetic and signaling vulnerabilities, com-
pared with most other tumor types. Collectively, MM-preferential 
dependencies cannot be attributed exclusively to biological differ-
ences between blood cancers versus solid tumors but may reflect the 
major underlying differences in the molecular network of MM cells 
compared with all other cancers.

The identified MM-preferential dependencies vary in terms 
of the fraction of MM lines dependent on each gene or the magni-
tude of essentiality scores. Future studies in larger panels of MM 
lines may reveal molecular determinants of these differences, for 
example, if any of these genes are preferential to individual MM sub-
types, defined by either genomic or CRISPR-based functional crite-
ria. Some MM-preferential dependencies defined by CRISPR are also 
apparent in shRNA studies, but others are not, perhaps reflecting a 
more pronounced and less variable suppression of gene function 
by CRISPR-based gene-editing. Time-course studies may provide 
important additional insights on the kinetics and the cytostatic versus 
cytocidal impact of CRISPR KO of MM-preferential dependencies and 
whether during the course of a CRISPR screen tumor cells ‘re-wire’ to 
accommodate the loss of such genes.

Our in vivo studies validated the large majority of MM-preferential 
dependencies identified in vitro. Additional genes may conceivably 
be preferentially essential for MM cells in vivo but not in vitro. Inter-
action with the BM milieu may alter the patterns of dependencies 
in MM cells, as evidenced by our observation that some genes were 
more essential for growth in vivo than growth in vitro. Future studies 
will probably define microenvironment-related in vivo dependencies 
(for example, growth factor receptors or cell adhesion molecules 
critical for cell–cell interactions) in models that faithfully simulate 

the support of the local BM milieu on MM cells and ideally involve local 
production by human stromal cells of cytokine/growth factors since 
many murine cytokines do not react with the human receptors. Our 
xenograft studies in immunocompromised mice could not examine 
the impact of MM-preferential dependencies on immune recogni-
tion. Notably, activation of POU2AF1, one of the top MM-preferential 
dependencies, was associated with decreased expression of MHC class 
II molecules, while other MM-preferential dependencies (for example, 
MPDU1 and ARID1A) influence tumor cell responses to natural killer 
cells53,54. Therefore, at least some MM-preferential dependencies could 
have pleiotropic roles beyond the cell autonomous regulation of MM 
cell survival and proliferation.

MM cell behavior is shaped by their intrinsic ‘PC biology’ and their 
superimposed ‘cancer biology’1: comprehensive understanding and 
therapeutic targeting of both aspects is warranted1. By comparing 
dependencies in MM versus all other malignancies, our study addresses 
this former aspect of ‘PC biology’ of MM and yields many previously 
underappreciated targets that do not require genomic perturbations 
in order to serve as essential genes and candidate therapeutic vul-
nerabilities for MM. Indeed, the large majority of MM-preferential 
dependencies are not among the top genes in terms of the frequency 
of mutations or DNA copy number gains in MM, are not necessarily 
located in highly accessible regions of chromatin and are not among the 
top differentially expressed genes in MM versus other neoplasias. Con-
versely, most genes overexpressed in MM cells (compared with other 
tumor types) are not essential for MM cells. Collectively, our study 
identifies MM-preferential dependencies, most of which would not be 
readily identified as MM driver genes with highly recurrent genomic 
perturbations, and thus is complementing the long-standing efforts 
to define therapeutic targets for the ‘cancer biology’ aspect of MM.

For nearly two decades, research on MM and other malignancies 
focused on profiling of tumor cell lines and patient samples for altera-
tions in their genome, transcriptome, epigenome and proteome, with 
the hope that molecules with the most recurrent or pronounced dys-
regulation could represent attractive therapeutic targets. Our study 
highlights that CRISPR-based functional genomics approaches4,55,56, 
by directing assessing the impact of gene perturbation on tumor cell 
fitness, can identify genes critical for tumor cells from a particular cell 
lineage and define promising therapeutic targets not readily identifi-
able on the basis of alterations in the tumor genome, transcriptome 
or epigenome.

Methods
This research complies with all relevant ethical regulations. In vivo 
studies were performed according to a protocol approved by the 
Dana-Farber Cancer Institute (DFCI) Institutional Animal Care and 
Use Committee (IACUC).

Cell lines
Details about the cell lines examined in the genome-scale CRISPR–
Cas9 gene-editing studies are available at https://depmap.org/portal/. 
Information about lines used in additional experiments is included in 
Supplementary Table 2. Cell line identity was validated by short tandem 
repeat analysis, and cultures were regularly tested for Mycoplasma.

CRISPR-based genome-scale screens
Genome-scale CRISPR–Cas9 screens were performed in human MM and 
other cell lines stably transduced with lentiviral vector pXPR-311Cas9, 
selected with blasticidin and then infected with a lentiviral library 
of 76,106 sgRNAs (AVANA) targeting 17,670 genes protein coding  
(~4 sgRNAs per gene) and including 995 nontargeting control sgRNAs. 
Cells were selected in puromycin and blasticidin for 7 days and then 
passaged without selection (with target representation of 500 cells 
per sgRNA) for 21 days. Genomic DNA was purified from endpoint cell 
pellets, sgRNA barcodes were PCR amplified with sufficient gDNA to 
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maintain representation, and PCR products were sequenced using 
Illumina protocols as described55,57. Data processing and quality control 
was performed as in previous studies4,55,56,58. CERES scores, a metric of 
relative essentiality of an individual gene in a given cell line, were cal-
culated as in ref. 55 to correct for gene-independent DNA copy number 
effects of CRISPR gene-editing. The CERES scores for all cell lines in 
this study are available at https://depmap.org. Unless noted, figures 
represent data reported in the 20Q4v2 release and exhibit very high 
degree of concordance with results from other releases (for example, 
in Extended Data Fig. 1). Essentiality was also evaluated by converting 
the CERES scores into ranks of CERES scores (also referred to as ‘CERES 
ranks’) for each gene within each cell line; or the MAGeCK algorithm59 to 
assess sgRNA depletion or enrichment without correction for DNA copy 
number. Dependency data based on RNA interference were derived 
from Achilles Heel shRNA screens and Novartis’ Project DRIVE60, and 
were reprocessed using the DEMETER2 algorithm to calculate gene 
dependencies56.

Computational methods to identify preferential 
dependencies
To identify candidate tumor type-preferential dependencies, we 
examined genes with significant difference and lower (more essen-
tial) average CERES scores in MM versus non-MM cell lines; in similar 
comparisons of a different tumor type versus all others; or compar-
ing MM lines versus, for example, solid tumors. Statistical signifi-
cance was assessed using empirical Bayes moderated t-statistics using 
Limma software with an adjusted P value of <0.05 and a difference in 
CERES score of <−0.2 between cell types was considered significant. 
To identify a refined list of candidate MM-preferential dependencies, 
we focused on genes that satisfied the following criteria: (1) adjusted 
P value (FDR) <0.05 in Limma tests comparing CERES scores in MM 
versus non-MM cell lines; (2) average CERES score difference of ≤−0.2 
between MM versus non-MM cell lines; (3) average CERES scores  
of ≤−0.2 in MM cell lines; (4) at least 15% MM cell lines with CERES  
score ≤−0.4; (5) the fraction of non-MM cell lines with ≤−0.4 CERES 
score is ≤0.8 (to filter out broadly essential/‘core essential’ genes); 
(6) adjusted P value (FDR) <0.05 in Fisher’s test comparing ranks of 
CERES scores in MM versus non-MM cell lines; (7) log2(TPM + 1) of ≥1.0 
in at least 30% of MM cell lines tested (TPM: transcripts per million). 
For genes in the X chromosome, CERES-based correction for their 
copy number status was not applied in early versions of DepMap data. 
Such genes are indicated in gray for the respective DepMap releases 
(Extended Data Fig. 1a). We also compared MM versus non-MM cell 
lines, using the same statistical tests as for CERES ranks, in terms of 
the distribution of DNA copy number-uncorrected ranks based on the 
MAGeCK algorithm59 of sgRNA depletion.

Molecular profiling and other datasets
Transcriptional profiles, DNA copy number status and mutational land-
scapes of human MM and non-MM cell lines examined were accessed 
from the CCLE portal (https://portals.broadinstitute.org/ccle/data, 
data versions from 2017–2018) or the Dependency Map portal (https://
depmap.org/portal). Transcriptional profiles, mutational and CNV data 
on MM tumor cells from patients and clinical data on progression-free 
survival (PFS) and overall survival (OS) of the CoMMpass study were 
accessed from the MMRF Researcher Gateway (https://research.them-
mrf.org/, data releases IA8–IA19): PFS and OS data were evaluated (for 
example, Extended Data Fig. 4c–e) for patients receiving bortezomib 
plus immunomodulatory thalidomide derivative (IMID) (cBI group), 
bortezomib without IMID (B group), IMID plus carfilzomib (cIC group) 
and all patients (full set) of the datataset. Gene expression profiles on 
patient tumors with non-MM malignancies (for example, in Extended 
Data Fig. 4a or Supplementary Figs. 2–6) were derived from The Cancer 
Genome Atlas (TCGA) and accessed from https://gdac.broadinstitute.
org/ (version 2016012800), https://portal.gdc.cancer.gov/. TCGA and 

MMRF CoMMpass data can also be retrieved from the UCSC Xena plat-
form61. For evaluation of gene expression, after a library size normali-
zation and voom transformation62, the Limma moderated t-test was 
applied between samples of MM and TCGA (excluding acute myeloid 
leukemia) to identify genes with FDR ≤0.05 and log2FC <−1.0 or above 
≥1.0. The patterns of transcript expression for MM-preferential depend-
encies were also examined in publicly available datasets of samples 
representing different stages of MM or settings with distinct differ-
ences in the clinical or biological behavior of MM (GSE2113, GSE5900, 
GSE6477, GSE13591, GSE39754, GSE39925 and GSE66293) or patients 
with MM receiving bortezomib-based or other treatments (GSE19748 
and GSE9782) or MM cells interacting with BMSCs (GSE20540). IRF4 
target genes were identified previously5 (in datasets GSE8958, GSE9067 
and GSE9367), and genes downregulated by IKZF1 or IKZF3 LOF were 
derived in prior studies (GSE113031) (ref. 19). ATAC-seq data of MM 
lines (from GSE121912) were analyzed to determine accessible regions 
of chromatin with MACS2 (v2.1.0.20151222) (refs. 63,64) using default 
parameters and a q-value of 0.01. Regions that overlapped ENCODE 
blacklisted regions were removed65. ATAC-seq data were normalized 
for reads per peak million (RPPM) for visualization using the follow-
ing formula: RPPM = reads × (106/total reads in autosomal peaks). 
Super-accessible regions were determined using the GenomicRanges 
(v1.36.1) and GenomicAlignments (v1.20.1) packages in R (v3.6.3) where 
regions within 12.5 kb were linked together excluding those within 
2.5 kb of a transcription start site. Regions were ranked by accessibility 
(RPPM), and regions that were past the inflection point were consid-
ered super-accessible regions. Genome-wide chromatin immuno-
precipitation followed by sequencing analyses for POU2AF1 (OCA-B) 
were accessed from GSE79480. Functional genomic data of retroviral 
gene-trap mutagenesis screen and a gene-editing screen for genes 
involved in ERAD regulation in KBM7 haploid cells were derived from 
ref. 45. The GDSC1 and GDSC2 datasets of pharmacological screens 
were derived from the Genomics of Drug Sensitivity Project (ref. 66 
and https://www.cancerrxgene.org/). The direct (physical) and indi-
rect (functional) associations of the MM-preferential dependencies 
(Extended Data Fig. 1d), based on computational prediction, knowledge 
transfer between organisms, interactions aggregated from other (pri-
mary) databases or other resources integrated, were visualized using 
the STRING database (String-DB, https://string-db.org/ v11.0) (ref. 67).

Cloning of individual sgRNAs
sgRNAs for CRISPR KO, CRISPR interference and CRISPR activation 
were packaged in pLVX-hyg-sgRNA1, pXPR-502 (RRID: Addgene_96923) 
and pXPR-050 (RRID: Addgene_96925) as described. Briefly, target 
sgRNA oligos (Supplementary Table 2) were mixed with Guide-it Oligo 
annealing buffer (Takara Bio 632630), denatured at 95 °C or 2 min 
and cooled to 25 °C over 15 min. Annealed oligos were ligated into 
gel-purified vectors using DNA Ligation Mighty Mix (Takara Bio USA, 
6023) at 16 °C for ~30 min, transformed into Stellar Competent Cells 
(Takara Bio USA), with resulting colonies picked, expanded with DNA 
isolated using the QIAprep Spin Miniprep Kit (Qiagen, 27106), screened 
for inserts and the resulting plasmids sequenced.

Addback studies
In-frame fusion of sequences encoding HA-FKBP12F36V in pLEX_305- 
N-dTAG (Addgene, #91797) to the complementary DNA (cDNA) encod-
ing IRF4 to yield HA-FKBP12F36V-IRF4 cDNA was performed by Gateway 
recombination (Invitrogen). Individual sgRNAs against intron–exon 
junctions (IEJs) of IRF4 were designed using the Broad Institute 
sgRNA design portal (https://portals.broadinstitute.org/gpp/public/
analysis-tools/sgrna-design). All sgRNA sequences were synthesized 
by CustomArray and cloned into a pHKO9 vector (as described in 
https://media.addgene.org/cms/filer_public/4f/ab/4fabc269-56e2-
4ba5-92bd-09dc89c1e862/zhang_lenticrisprv2_and_lentiguide_oligo_
cloning_protocol_1.pdf). Production of lentiviral particles for IRF4 
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fusion constructs and individual sgRNAs, and lentiviral transduction 
were performed on the basis of published protocols68,69. The viability of 
cell populations transduced with HA-FKBP12F36V-IRF4, sgRNAs against 
IEJs of IRF4 or both was assessed 3 days after hygromycin selection for 
the last of the transductions (for the sgRNAs against IEJs of IRF4) using 
CellTiter-Glo (CTG, Promega).

Tumor cell viability assays
In vitro anti-MM activity for small-molecular-weight inhibitors. 
CTG assays were performed for studies with pan-PIM inhibitors 
LGB-321(AdooQ BioScience #A14420-5) or SGI-1776; the CBFB inhibi-
tor Ro5-3335 (Fisher Scientific #469410), the CARM1 inhibitor Merck 
217531 (EMD Millipore #217531), the SYVN1 inhibitor LS-102 (Fisher 
Scientific #NC1398267) and SIK inhibitor HG-9-91-01 (MedChemex-
press, HY-15776-5MG). Cell lines were seeded with inhibitor for 3–5 days 
as indicated. CTG assays at indicated timepoints were measured by a 
BioTek Synergy 2 plate reader (BioTek).

Assessment of cell viability after CRISPR gene editing, activa-
tion or interference. Lenti-X-293T cells were transduced using lipo-
fectamine with packaging plasmids psPAX2 (RRID: Addgene 12260) 
(5 µg) and MD2.G (RRID:Addgene_12259) (2.5 µg) and plasmids encod-
ing individual sgRNAs packaged in the pXPR_502 or pLVX-hyg-sgRNA1 
vectors (5 µg). Virus was collected after 24 h and 1 ml applied to 1 × 106 
target cells.

For CRISPR gene-editing studies, viability of KMS18 or OCI-My5 
cells harboring Tet-inducible SpCas9 construct and transduced with 
sgRNAs for genes of interest (details in Supplementary Table 3) were 
seeded (100 cells per well) into 384-well plates, in 10% Tet-negative 
fetal bovine serum (FBS) medium (50 μl) with or without Doxy 
(2 μg ml−1) and another 50 μl medium with or without Doxy (2 μg ml−1) 
was added at day 7. CTG reagent was added to each well at day 14, and 
plates were read using a microplate reader. For CRISPR interference 
studies, KMS11 cells with Tet-inducible dCAS9_KRAB construct and 
transduced with sgRNAs (details in Supplementary Table 3) were 
seeded (0.3 × 106 cells per well) into 24-well plates, in 10% Tet-negative 
FBS medium 1 ml with or without Doxy (2 μg ml−1), and seeded in 
384-well plates. Media were changed every 3–4 days with cell viability 
checked by CTG at day 11.

For CRISPR activation, LP1 dCAS9-VP64 cells were plated in 1 ml 
of complete RPMI1640 medium per well in a 24-well plate. Cells were 
incubated in cell medium containing polybrene (4 µg ml−1; Santa Cruz 
Biotechnology) and 1% HEPES (1 M), and same amount of viral prep, 
were centrifuged at 1,500g for 2 h and incubated overnight at 37 °C 
5% CO2. Media were changed the next day and, after another 48 h, 
selection with puromycin 2 µg ml−1 for 7 days. After 12 and 19 days from 
transduction, cells were detached from flask by trypsin and allowed to 
recover at 1 ml of complete medium. Then, 50 μl aliquots were seeded 
in 384-well plate and were assessed using CTG.

Competition assay evaluated by INDEL analysis
Competition assays with gene-edited cells were performed as in pre-
vious studies70. KMS18 cells stably transduced with Doxy-inducible 
SpCas9 were transduced with pLVX-hyg-sgRNA1 plasmid harboring 
specific gRNAs (Supplementary Table 3) and selected in Hygromycin 
B (350 μg ml−1). OR12D2 KO cells and UBE2J1 KO cells were mixed at a 
1:9 ratio and maintained with or without Doxy at 2 μg ml−1 (replenished 
every 3 or 4 days). Cells were collected at day 14 or 28. Genomic DNA 
was extracted from cell pellets, and targeted lesion of sgRNA sequence 
was amplified by PCR and analyzed by next-generation sequencing 
(MGH DNA core; https://dnacore.mgh.harvard.edu/new-cgi-bin/site/ 
pages/crispr_sequencing_main.jsp). Indel analysis and estimation of 
percentage of cells with frameshift mutations was performed with 
CRISPRESSO (http://crispresso.pinellolab.org).

Immunoblotting
Similar to prior studies70, cells (3 × 106 per condition) were collected 
and lysed using RIPA buffer (ThermoFisher) with protease/phosphatase 
inhibitor cocktail (Cell Signaling Technology) by incubating on ice for 
10 min. Lysates were collected by centrifugation (15,000g for 10 min 
at 4 °C), and lysate concentration was determined using bicinchoninic 
acid (BCA) assay (ThermoFisher). Protein samples were resuspended 
in Bolt LDS sample buffer (NuPage, Invitrogen) with sample-reducing 
agent (NuPage), heated to 70 °C for 10 min and 10–20 μg per sample 
loaded on 4–12% Bis-Tris gels (NuPage) and run at 125 V for 70 min using 
MOPS running buffers. Gels were transferred onto polyvinylidene 
fluoride membranes using SDS-based transfer buffer (NuPage), blocked 
in 5% skim milk in TBS-T for 1 h and probed with primary antibodies 
overnight at 4 °C. Secondary antibodies in 1% skim milk in TBS-T were 
applied to the membranes for 1.5 h at room temperature before incuba-
tion in Enhanced Chemiluminescence (ECL) (ThermoFisher #34075) 
substrate. Information on antibodies used in these studies is included 
in Supplementary Table 2. Immunoblots were visualized using a C-DiGit 
Blot Scanner (LI-COR Biotechnology).

RNA-seq
Triplicate cultures of LP1 cells transduced with sgRNAs for CRISPR 
activation of POU2AF1 or control genes were pelleted and frozen at 
−80 °C. RNA was extracted by RNeasy Plus Mini Kit (Qiagen 74134), 
and ERCC RNA Spike-In Mix (Thermo Fisher 4456740) was added at 
the first step of extraction. RNA sequencing was performed by the 
Molecular Biology Core Facilities (MBCF, DFCI). Results are available 
(GSE186997). RNA-seq raw data processing and generation of gene 
read counts was performed with STAR71. Analysis performed with 
edgeR Bioconductor package involved ERCC-based normalization, a 
generalized linear model and, for the likelihood ratio test, pooling of 
the coefficients of each sgRNA within the control or POU2AF1 activation 
groups. GSEA was performed using the preranked option (for example, 
ranking according to −log10FDR × log2FC) with custom sets represent-
ing genes suppressed by LOF of IRF4, IKZF1, IKZF3 (refs. 5,19) or genes 
upregulated with MYC amplification (for example, Kim_MYC_Ampli-
fication_Targets_UP), using default settings (through Gene Pattern, 
https://www.genepattern.org/).

Subgenome-scale CRISPR editing studies in vitro and in vivo
A library of 1,372 oligonucleotides for sgRNAs was designed to 
include typically 4 guides per gene for each of 184 genes, including 89 
MM-preferential dependencies; broad-spectrum oncogenes; select 
tumor suppressor genes (for example, PTEN); and genes with limited 
in vitro essentiality in MM cells, including some with significantly higher 
expression in MM versus non-MM lines, and 155 OR genes ‘DNA cutting’ 
control sgRNAs. These oligonucleotides were synthesized in pooled 
format (CustomArray), PCR amplified and gel purified using a Qiagen 
gel extraction kit and used as template for a second PCR reaction with 
the flanking sequence to attach to the lentiGuide-Puro vector. After gel 
purification, 0.1 pmol of PCR product, 90 ng of lentiGuide-Puro and 
Gibson assembly kit with water were incubated for 30 min at 16 °C. Next, 
1,200 ng of the resulting plasmid DNA was transformed into 300 μl of 
ElectroMAX Stbl4 electrocompetent cells by electroporation and put 
into 2.5 ml of SOC medium before being shaken 1 h at 37 °C. After incu-
bation, cells were plated in 3 ml of medium on a total of three bioassay 
plates and incubated for 16 h at 37 °C. After 16 h of incubation, cells are 
collected with 30 ml of cold LB each by biospreader and pelleted at 4 °C 
at 6,000g for 15 min. Plasmid DNA was extracted using the QIAGEN 
Plasmid Plus Maxi Kit. Lenti-X-293T cells were plated in T175 culture 
flasks in Dulbecco’s modified Eagle medium with 10% FBS and incubated 
overnight. The next day, cells were transduced using lipofectamine with 
the library plasmids (30 μg) and MD2.G encoding VSV-G (12.5 μg). Viral 
supernatants were collected after 24 h and stored at −80 °C before use.
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SpCas9-expressing cell lines (KMS11, XG-7, RPCI-WM and BCWM1) 
were incubated for 16 h in cell medium containing 8 μg ml−1 polybrene, 
10 mM HEPES (pH 7.4) and viral prep (6 ml) diluted to achieve transfec-
tion rate of 0.3. After the end of the incubation with the viral preps, cells 
were washed and incubated for an additional 2 days. Transduced cells 
were treated with puromycin (2 μg ml−1) for up to 7 days after 3 days 
from transduction. The RPCI-WM and BCWM1 cell lines transduced 
with this focused sgRNA library were cultured (three replicates per 
cell line) in vitro for 3 weeks. At the end of this incubation, tumor cells 
were collected, and PCR amplification and next-generation sequenc-
ing of the samples were performed53,70, to quantify the abundance of 
sgRNAs. The KMS11 and XG7 cell lines transduced with this focused 
sgRNA library were introduced in vivo into bicalcium phosphate par-
ticles: the latter had been loaded with human primary mesenchymal 
BMSCs, cultured ex vivo under conditions favoring osteogenic differ-
entiation of these stromal cells46 and implanted subcutaneously (two 
scaffolds per mouse) into 8-week-old NSG female mice. Seven weeks 
after scaffold implantation, 1.5 million KMS11-SpCas9 or XG-7-SpCas9 
cells transduced with the focused sgRNA library were injected directly 
into the scaffolds (five mice for KMS11 and eight for XG7 study). With-
out exceeding the maximal tumor burden (20 mm of diameter in any 
direction) permitted by DFCI IACUC, tumors were removed, and pro-
cessed for DNA isolation (Blood & Cell Culture DNA Maxi Kit #13362), 
pooling of material from the same mouse, PCR amplification and 
next-generation sequencing53,70, to quantify the abundance sgRNAs 
for genes of interest (versus sgRNAs for control OR genes). Read counts 
normalized according to the OR control sgRNAs were analyzed, with 
averaging of read counts examined both before (for example, Fig. 8a) 
and after (for example, Fig. 8b,c) log2 transformation, yielding con-
cordant conclusions regarding the patterns of depletion for sgRNAs 
targeting MM-preferential dependencies.

Statistics and reproducibility
To identify and further characterize genes preferentially essential 
for MM, this study involved multiple essentiality metrics and cri-
teria for the identification of these genes; corroboration of results 
across multiple iterations of genome-scale screens; functional char-
acterization of many of these genes; integration of their molecular 
features across multiple datasets; and alternative methods of analy-
ses of data (information on additional approaches for data analyses 
not included in this study are available through the corresponding 
author). Details on sample size(s) and statistical test(s) are provided 
in the respective sections. Statistical tests were two-sided (except rank 
aggregation analyses), and distribution of individual data points was 
assumed to be normal, but this was not formally tested. No statistical 
methods were used to predetermine sample sizes, but in this study 
these sample sizes (for example, numbers of replicates in CRISPR 
experiments) were similar to those reported in prior publications4. 
Animal studies were performed according to a protocol approved 
by the DFCI IACUC and did not involve treatment administration; 
thus, randomization was not pertinent. For other experiments, data 
collection and analysis were not performed in a manner blinded to 
the conditions of the experiment. Further information on research 
design is available in the Nature Research Reporting Summary linked to  
this article.

Resource availability
Requests for resources and reagents should be directed to the Lead 
Contact, Constantine S. Mitsiades (Constantine_Mitsiades@dfci. 
harvard.edu).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
RNA-seq data that support the findings of this study are publicly avail-
able in the Gene Expression Omnibus (GEO) under accession code 
GSE186997. Previously published data that were reanalyzed here 
are available under accession codes GSE2113, GSE5900, GSE6477, 
GSE13591, GSE39754, GSE39925, GSE66293, GSE20540, GSE8958, 
GSE9067, GSE9367, GSE19748, GSE9782, GSE113031, GSE121912 and 
GSE79480. Molecular profiling data were derived for CCLE lines from 
the CCLE portal (https://portals.broadinstitute.org/ccle/data) or the 
Dependency Map portal (https://depmap.org/portal), for MM patient 
samples from MMRF Researcher Gateway (https://research.themmrf.
org/) and for non-MM patient samples from the TCGA Research Net-
work (https://portal.gdc.cancer.gov/, http://cancergenome.nih.gov/). 
Source data are provided with this paper. All other data supporting the 
findings of this study are available from the corresponding author on 
reasonable request.

Code availability
The analyses of our study involved standard workflows and sequential 
use of available code, for example, through R packages from CRAN 
(https://cran.r-project.org/) and Bioconductor (https://www.biocon-
ductor.org) and R build-in functions for graphing, statistical tests and 
data analyses, for example, moderated t-test with the limma Biocon-
ductor R package, Fisher’s exact test with the fisher.test R build-in 
function, survival analysis log-rank test the survival CRAN R package 
and gene expression analysis with edgeR Bioconductor R package. For 
processing large data matrices we used the data.table CRAN R package. 
For data visualization, for example, generation of heat maps with the 
ComplexHeatmap Bioconductor R Package, the circos plot with circlize 
Bioconductor R package and for dimensionality reduction visualiza-
tion the tsne CRAN R package. We further used for data analysis and 
visualization the statistical and graphing software GraphPad Prism 9, 
heat maps with Morpheus (https://software.broadinstitute.org/mor-
pheus/) and network analysis with StringDB (https://string-db.org/). 
RNA-seq raw data processing and generation of gene read counts were 
performed with STAR71.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | MM-preferential dependencies in genome-scale 
CRISPR-based gene-editing screens. a, Summary matrix of results for 
identification of MM-preferential dependencies in genome-scale CRISPR-
based gene-editing screens from different releases of the Dependency Map 
program. The criteria used to identify MM preferential dependencies in the 
20Q4v2 Dependency Map data were also applied in earlier releases (18Q3 to 
20Q3). The matrix summarizes results for all genes that met these criteria in at 
least one of the releases. Black or white indicate, respectively, that a gene did 
vs. did not meet criteria for MM preferential dependency in the respective data 
release (gray signifies that CERES scores were not calculated for a given gene 
in the data release). b, MM-preferential dependencies clustered according 
to molecular pathways represented in this group of genes. Color-coded 
heatmaps for CERES scores following the format of Fig. 1a. Genes are clustered 

based on their related functional groups, pathways, or biological functions, 
based on aggregate information from the literature. c-d, Molecular pathways 
enriched for MM-preferential dependencies. c, Schematic representation of 
functional groups represented in the MM-preferential dependencies, such as 
transcription factors/co-factors, other regulators of transcriptional responses 
and chromatic signaling; kinases serving as upstream regulators of these 
pathways (for example, kinases activating NF-κB); or endoplasmic reticulum/
Golgi regulators. d, Visualization of the direct (physical) and indirect (functional) 
associations of the MM-preferential dependencies, based on computational 
prediction, knowledge transfer between organisms, interactions aggregated 
from other (primary) databases or other resources integrated and visualized by 
the online STRING database (https://string-db.org/, v11.0)67.
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Extended Data Fig. 2 | See next page for caption.

http://www.nature.com/natcancer


Nature Cancer

Resource https://doi.org/10.1038/s43018-023-00550-x

Extended Data Fig. 2 | Additional metrics of essentiality for MM preferential 
dependencies. a-b, Ranks of CERES scores or DNA copy number-uncorrected 
ranks of sgRNA depletion for MM-preferential dependencies. Essentiality 
metrics are depicted in color-coded heatmaps similar in format to Fig. 1a, with 
results presented for MM lines as a matrix (each line in a separate column) 
while results for non-MM lines are stacked separately for each gene from lowest 
to highest essentiality (from left to right in each row). For each cell line, the 
top 3000 genes with the lowest CERES scores (in a) or with most pronounced 
sgRNA depletion based on MAGeCK rank aggregation (in b) are depicted in 
green or purple, respectively. For each cell line, the top 100 genes with highest 
CERES scores (in a) or highest MAGeCK ranks for sgRNA enrichment (in b) are 

depicted in purple and yellow/orange, respectively, according to the respective 
color-coded scales. c-d, Patterns of depletion for shRNAs targeting genes 
defined by CRISPR as MM-preferential dependencies. c, DEMETER2 scores are 
depicted as a matrix for MM (n = 13 cell lines; right) and as separate stacked plots 
for non-MM (n = 461 cell lines; left), according to the color-coded scale (black/
blue for shRNA depletion; yellow/orange/brown for shRNA enrichment; white for 
DEMETER2 scores between -0.4 and +0.4; and gray for genes not examined in the 
shRNA screen of the respective cell line). d, DEMETER2 scores for key examples of 
MM-preferential dependencies are depicted (in rows) for both non-MM (left) and 
MM lines (right) as stacked bar graphs, according to the color-coded scale.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Patterns of expression of MM-preferential 
dependencies in MM vs non-MM cell lines. RNA-Seq data (CCLE dataset) for 
MM-preferential dependencies in MM vs. non-MM cell lines. Transcript levels 
(log2(TPM + 1)) for each gene (row) across MM and non-MM cell lines are scaled 

by maximum value resulting in a value range between 0 and 1 and presented as 
stacked bar plots. Color bars on the side of the graph denote different clusters of 
genes, defined based on analyses of Fig. 3 (based on 2-sided limma t-test FDR and 
log2FC of differential expression of each gene in MM vs non-MM lines).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Patterns of transcript levels for MM-preferential 
dependencies in different biological or clinical contexts. a, RNA-Seq data  
for MM-preferential dependencies in patient-derived tumor samples for  
MM vs. non-MM. Transcript levels (presented as stacked plots) for each gene 
(row) across MM (n = 591 samples; MMRF CoMMpass study, IA8 release) and  
non-MM (n = 11060 samples, TCGA; accessed from GDAC). Raw counts were  
voom normalized, negative voom values were set to zero, scaled by maximum 
value for each gene, resulting in a value range between 0 and 1. Concordant 
observations also obtained with other versions of MMRF and TCGA datasets.  
b, Comparative analyses of transcript levels for MM-preferential 
dependencies in different stages of myelomagenesis or settings with 
distinct differences in clinical or biological aggressiveness of MM. Heatmap 
summarizes results from comparisons performed between groups of samples 
within each of the gene expression profiling datasets indicated in the figure. Red 
and blue denote statistically significant (FDR < 0.05, Limma t-test, log2FC > 1.0 
or < -1.0) up- or down-regulation, respectively, for a gene in a given group of 
samples vs. its indicated comparator group. Genes in gray do not have perfect 
match probes in the respective array. White indicates no statistically significant 

difference for a given comparison. Number of samples per group is indicated 
next to each comparison. c-e, Transcript levels of most MM-preferential 
dependencies do not consistently correlate with adverse clinical outcome. 
c, Overall survival (OS) or progression free survival (PFS) were examined for 
MM patients at high vs. intermediate vs. low tertiles of expression of each MM-
preferential dependency in each dataset indicated in the graph (see Methods). 
Red and blue denote statistically significant (at FDR < 0.05, two-sided log-rank 
test) correlation of transcript levels for a given gene with adverse or favorable, 
respectively, clinical outcome (white indicates FDR > 0.05). d-e, Cumulative 
plots summarizing results of c, in terms of OS (d), or PFS (e), between MM 
patients with high vs. intermediate vs. low tertile of expression of each gene in 
each dataset indicated in the graph. For each potential FDR value (x-axis), the 
y-axis depicts, separately for OS or PFS in each dataset, the cumulative fraction 
of MM-preferential dependencies exhibiting FDR levels equal or lower to those 
depicted in each respective position of the x-axis. For all evaluated datasets, 
<25% of MM-preferential dependencies exhibit FDR < 0.05 for the correlation of 
transcript levels with PFS or OS. Number of patient samples in c-e is indicated for 
each dataset.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Genomic landscape of MM-preferentially essential 
genes. a, Mutational and DNA copy number data for MM-preferential 
dependencies in MM vs. non-MM cell lines is included in heatmaps of CERES 
scores (similar to the format of Fig. 1a). Green stars represent non-synonymous 
mutations; while CNV gains and losses are depicted by ‘+’ or ‘-’, respectively. 
In stacked plots for non-MM cell lines, green stars are also stacked and are not 
linked with the CERES scores in respective lines. b, Rank of genes with most 
frequent CNV gains in MM patient tumor samples (N = 932 samples; N = 18,057 
genes with CERES data (20Q4v2) and CNV data in CoMMpass study, IA15 
release): MM-preferential dependencies are highlighted in red and their gene 

symbols are labeled for those MM-preferential dependencies ranked in the top 
200 genes (genes are ranked on the x-axis on a log2 scale). c, Top hotspots for 
gain of structural variants (SVs) ranked based on their frequency in MM patient 
tumor samples (CoMMpass study), derived from analyses of Rustad et al.13. 
MM-preferential dependencies residing in 8 of these hotspots are highlighted, 
and those in bold have not been previously proposed as candidate drivers of the 
respective hotspots. Gray denotes hotspots which contain no genes evaluated 
in the genome-scale CRISPR screens. d, Heat maps for CERES scores in MM vs. 
non-MM lines of genes in each of the 8 SV gain hotspots of panel c that contain 
MM-preferential dependencies.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Overlap or proximity of chromatin accessible regions 
with MM-preferential dependencies. a, Plot of stitched regions of chromatin 
accessibility with average ATAC-seq signal (RPPM) across 22 MM cell lines shown 
in gray. Black lines denote the inflection point that denotes super-accessible (SA) 
regions. Regions within 100 kb of MM-preferential dependencies are denoted 
by red tick marks on the bottom and the odds ratio (OR) and P-value (two-sided 
Fisher’s exact test) of enrichment of MM-preferential dependencies found near 
super-accessible regions are shown. b, Heatmap of chromatin accessible regions 
within 100 kb of MM-preferential dependencies across 22 MM cell lines. c-f, 
Genomic plots of ATAC-seq for select examples of MM-dependencies (PRDM1, 

IRF4, POU2AF1, UBE2J1) that overlap with super-accessible (SA) regions. Each cell 
line is shown in a transparent gray and the average is shown in black. Note the 
proximity of IRF4 and DUSP22 and the multiple prominent areas of accessible 
chromatin within intronic regions of DUSP22. g, Hierarchical clustering of MM 
cell lines based on their CERES scores for MM preferential dependencies. MM 
cell lines are annotated for their status for genomic events, such as translocations 
targeting CCND1, CCND2, CCND3, MAF, MAFB, MMSET/NSD2, mutations for KRAS 
or NRAS, loss-of-function for TP53; or the functional status of their dependence 
(based in CRISPR data) on either MAF or MAFB.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Comparative analysis of CERES scores for MM 
preferential dependencies in MM vs other hematologic malignancies vs. 
solid tumors. Results are presented in a manner similar to Fig. 1, with stacked 
bar plots for solid tumors (left); separate matrices for cell lines from non-MM 
hematologic malignancies (middle) vs. MM (right). Genes are included in 7 
different clusters determined based on the criteria included in the color-coded 
bars on the right-hand side of the graph (FDR of comparison of CERES scores 

and difference in average CERES scores in MM vs. non-MM hematologic cell 
lines; Fisher’s test FDR for comparison of CERES ranks; absolute difference in % 
of MM vs. non-MM hematologic cell lines with CERES scores ≤ -0.4; and % of MM 
lines with CERES score ≤ -0.4). Results highlight that several MM-preferential 
dependencies are shared between MM and other hematologic malignancies, but 
many others are preferentially essential only for MM cell lines, a statement also 
supported by results of Extended Data Fig. 8.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | MM-preferential dependencies with distinct vs. 
overlapping roles in MM vs. other hematologic neoplasias or solid tumors. 
a, Heat map for MM-preferential dependencies, summarizing their potential 
roles as preferential dependencies for other malignancies. Color coding 
indicates the difference in average CERES score for each gene in a given tumor 
type vs. all others: black/blue or red/orange denote FDR < 0.05 and lower or 
higher, respectively, average CERES scores for a given gene in the respective 
neoplasia vs. all other cancer types. White denotes FDR > 0.05. b-c, t-SNE plots 
of cell lines (depicted as dots), from MM, leukemias, lymphomas or other 
neoplasias, clustered according to RNA-Seq profiles b, or CERES scores c, for 
MM-preferential dependencies. RPKM data in b from CCLE [2018] for lines 
with matching 20Q4v2 CERES scores (N = 15, 33, 16, 505 lines, respectively). 
In c, N = 19, 44, 20, 706 lines, respectively (20Q4v2). d, Numbers of CRISPR-
defined preferential dependencies (y-axis; identified based on the same criteria 
applied for MM) vs. number of lines for each indicated tumor type (x-axis). e, 
Volcano plot of -log10FDR (Limma t-test) for comparison of CERES scores in MM 
vs non-MM hematopoietic cell lines (y-axis) vs. difference in average CERES 

scores in MM vs. non-MM cell hematopoietic lines (x-axis). MM-preferential 
dependencies (identified in this study by comparison of MM vs. all non-MM cell 
lines) are depicted in red and orange, respectively, if they did vs. did not exhibit 
significantly lower CERES scores in MM compared with non-MM hematopoietic 
lines. f-h, Dependencies with differential role in MM vs. solid tumors or vs. B-cell 
lymphomas. Volcano plots for comparisons of CERES scores in MM lines (N = 19) 
vs. f, all non-MM cell lines, from both hematologic malignancies and solid tumors 
(N = 768; also see Supplementary Table 1); g, only solid tumor cell lines (N = 701); 
h, B cell lymphoma lines (N = 13) (x-axis: difference in average CERES scores 
between respective groups; y-axis: -log10FDR, Limma t-test). Red dots in each 
plot indicate genes satisfying criteria for more pronounced essentiality in MM 
compared with the respective groups of cell lines; i, Venn diagram highlighting 
genes with differential role in MM vs. solid tumors or B-cell lymphomas, based on 
panels f-h. j, CERES scores for genes that do not meet criteria for MM-preferential 
dependencies (comparison of MM vs. all other non-MM lines), but are more 
essential in MM vs. solid tumors or B-cell lymphomas, based on panels f-h.

http://www.nature.com/natcancer


Nature Cancer

Resource https://doi.org/10.1038/s43018-023-00550-x

Extended Data Fig. 9 | Pattern of essentiality for genes downstream of IRF4 or 
IKZF1/IKZF3. CERES scores for genes previously defined as a, IRF4 target genes 
in MM cells5 or b, genes that are downregulated by loss-of-function of IKZF1 or 
IKZF3 (GSE113031) are depicted in a heatmap format (similar to Fig. 1) and in 
clusters of genes which (i) can be considered ‘core essential’ genes (for example, 

CERES < -0.4 in ≥90% of cell lines across cancers); (ii) meet all criteria for MM-
preferential dependencies vs. other genes that have CERES scores < -0.4 in (iii) 
>50% of MM cell lines tested, (iv) 30-50% of MM cell lines tested; (v) <30% of MM 
cell lines tested; or (vi) none of the MM cell lines tested.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Molecular and functional studies of POU2AF1 and 
ER-associated dependencies. a-b, Immunoblotting analyses to confirm 
that protein levels of POU2AF1 are decreased with Doxy-inducible CRISPR 
interference (a, KMS11 cells) and increased with CRISPR activation (b, LP-1 cells) 
compared to cells with sgRNAs for control OR genes. Beta-actin a, or vinculin b, 
were probed as loading controls in the same respective membrane concurrently 
with POU2AF1. c, Relative numbers of viable LP-1 cells with CRISPR-based 
activation of POU2AF1 vs. a control OR gene (day 12 after end of transduction 
with sgRNAs for POU2AF1; results qualitatively concordant with those at later 
time-point in Fig. 6b). CTG assay, mean +/− s.e.m. results; n = 6 independent 
replicate cell cultures per condition; one-way ANOVA and Tukey’s post-hoc test 
(detailed results included in Source Data), p < 0.001 for each POU2AF1 sgRNA vs. 
OR12D2 sgRNA). d, Immunoblotting for UBE2J1 after doxy-inducible CRISPR-
based KO of UBE2J1 (or a control OR gene). Vinculin was probed as loading 
control concurrently with the staining for UBE2J1. Each experiment in a-d was 
performed once. e, UBE2J1, its dislocon complex partners SEL1L, SYVN1, and 

other ER-related MM preferential dependencies are among the top ‘hits’ in two 
genome-scale screens (using retroviral gene-trap mutagenesis and CRISPR gene-
editing)45 for genes involved in ERAD regulation (in KBM7 haploid cells). f, In vitro 
bortezomib treatment (24 h) of KMS18 cells with Doxy-inducible CRISPR KO of 
SYVN1 or control OR genes. (CTG; mean +/− s.e.m.; n = 8 independent replicate 
cell cultures for drug-free control and n = 4 independent replicate cell cultures 
per drug dose for each KO; 2-way ANOVA (p < 0.001); detailed results of Tukey 
post-hoc tests included in Source Data). g-h, Patterns of CERES scores in MM 
(n = 19) and non-MM (n = 770) lines for g, ER/ERAD/Golgi-related genes and h, 
select ER genes. Results are presented similar to format of Fig. 1. Highlighted gene 
symbols include MM-preferential dependencies (red); examples of core essential 
genes (green); and genes which do not meet all criteria for MM-preferential 
dependencies but are recurrently essential for MM cell lines and are linked with 
the function of the ER glycoprotein quality control system (blue) and the ER 
translocon system (purple).
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