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W Check for updates

Clinical progress in multiple myeloma (MM), anincurable plasma cell (PC)
neoplasia, hasbeen driven by therapies that have limited applications
beyond MM/PC neoplasias and do not target specific oncogenic mutations
in MM. Instead, these agents target pathways critical for PC biology yet

largely dispensable for malignant or normal cells of most other lineages.
Here we systematically characterized the lineage-preferential molecular
dependencies of MM through genome-scale clustered regularly interspaced
short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of
non-MM lines and identified 116 genes whose disruption more significantly
affects MM cell fitness compared with other malignancies. These genes,
some known, others not previously linked to MM, encode transcription
factors, chromatin modifiers, endoplasmic reticulum components,
metabolic regulators or signaling molecules. Most of these genes are not
among the top amplified, overexpressed or mutated in MM. Functional
genomics approaches thus define new therapeutic targets in MM not
readily identifiable by standard genomic, transcriptional or epigenetic

profiling analyses.

Multiple myeloma (MM), a plasma cell (PC) neoplasia and the second
most common hematologic malignancy inthe Western world, remains
incurable despite major therapeutic progress during the past two dec-
ades. Much of this progress was achieved through use of proteasome
inhibitors (Pls), thalidomide and its derivatives, anti-CD38 monoclonal
antibodies and more recently BCMA-targeting therapies. These agents
have limited therapeutic applications outside MM and do not target
specific oncogenic mutations in MM cells, but perturb pathways that
arecritical for PCbiology yet largely dispensable for most other normal
or malignant cell types'”. By contrast, established or investigational
therapeutics that target mutated gene products and pathways of MM?
generally yield short-lived clinical responses. Identification of genes
essential for malignant or normal PCs, but dispensable for most other
cell types, normal or malignant, could uncover putative therapeutic
targets for MM. In this Article, therefore, we performed a systematic
characterization of the molecular vulnerabilities of MM cells, compared
with other types of neoplastic cells, through genome-scale clustered

regularly interspaced short palindromic repeats (CRISPR) gene-editing
screens. We hypothesized that these functional screens would not
only ‘re-identify’ known MM/PC dependencies but also pinpoint addi-
tional genes whose preferential role in MM might not be readily pre-
dicted from patterns of molecular alterations in MM cells, including
mutations, DNA copy number changes, structural rearrangements or
overexpression.

Results

MM-preferential dependencies identified by CRISPR screens
We sought to identify genes whose loss of function (LOF) more effi-
ciently and consistently inhibits growth/survival of MM compared
with non-MM cells. CRISPR/Cas9-based gene-editing screens were
performedin19 MM and 770 non-MM lines (Methods and ref. 4). Guide
RNAs for genes more essential for MM are predicted to be eliminated
more profoundly in MM than non-MM cells. We compared the patterns
of gene essentiality in MM versus non-MM lines using CERES scores
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(Fig.1a, Extended DataFig.1a,b and Supplementary Table 1), the ranks
of genes accordingto their CERES scores in agiven cell line (Extended
Data Fig. 2a) or MaGECK ranks (Extended Data Fig. 2b). These com-
parisons, based on criteria outlined in Methods, identified genes with
statistically significant differencesin quantitative metrics of essential-
ity in MM versus non-MM lines, while filtering out those genes with a
similar frequency of essentiality in MM versus non-MM, including ‘core
essential’ genes required across all cancer cell lines. These analyses
identified 116 MM-preferential dependencies (Fig. 1a, Extended Data
Figs.1and 2a and Supplementary Table 1). In retrospective analyses
of sequential releases of data from the Dependency Map (DepMap)
program, whichincludedincreasingnumbers of cell lines, the identity
of MM-preferential dependencies was largely stable, with 72 genes
identifiedin five consecutive releases. Additional cell lines in the later
datasets allowed identification of >30 additional preferential depend-
encies (Extended Data Fig.1a). These analyses were not influenced by
the computational correction (for example, in CERES score calculation)
ofthe gene-independent copy number effects of CRISPR gene-editing,
because MAGeCK analyses without such correction provided concord-
ant results for these MM-preferential dependencies (Extended Data
Fig. 2b and Supplementary Fig. 1). Collectively, the use of multiple
analytical methods and versions of the DepMap data offers greater
confidence in the identification of MM-preferential dependencies.
While some of these genes can also beidentified by short hairpin RNA
(shRNA)-based screens, including IRF4 (ref. 5), PIM2, PRDM1, POU2AFI,
NFKBI1,RELB, IGFIR, IRS1,EP300 or TCF3 (Extended DataFig.2c,d), many
others were identified only by gene-editing studies.

Approximately one-third of the genes preferentially essential
for MM encode transcriptional and epigenetic regulators (Fig. 1b and
Extended Data Fig.1b-d). These include regulators of PC biology (for
example, IRF4, PRDM1,XBP1,IKZF1 and IKZF3), members of the NF-kB
pathway (for example, NFKBI and RELB), or other genes involved in MM
pathogenesis (for example, MAF). Several transcription factors (TFs)
withunderappreciated rolesin MM, including MEF2C, CBFB, TCF3, IRF2,
ZBTB38, ZNF296 and ZNF592, as well as transcriptional cofactors such
as POU2AF1, CTBP1, TLE3 and ATF7IP were also identified. Disruption
of several epigenetic enzymes had a more pronounced effect on MM
compared with non-MM cell lines, including EP300, KDM5C, CARM1,
DOTIL and HDACI, as well as members of the BAF (SWI/SNF) com-
plex (ARID1IA, SMARCDI and ARID2), STAGA complex (TAFSL, TADAI,
SUPT20H and SUPT7L), Mediator complex (MED23 and MEDI13L) and
PRC1 (PCGFS5, RINGI and PCGFI). MBNL1, a regulator of alternative
splicing of pre-mRNAs, and several RNA binding proteins (CPEB4,
RPRD2, RBMI1S5 and ATXN2L) were also more essential in MM cell lines.

Consistent with the highly secretory nature of PCs, a large group
of MM-preferential dependencies areinvolved inendoplasmicreticu-
lum (ER) function (Fig. 1b), including genes encoding ER membrane
protein complexes mediating dislocation of misfolded proteins from
the luminal side of the ER to the cytosol (for example, HERPUDI and
SEL1L); ER-specific E2 ubiquitin conjugating enzymes (for example,
UBE2J1 and UBE2G2) or the E3 ligase SYVNI; enzymes required for
N-glycan-dependent surveillance of quality control for luminal ER
glycoproteins (for example, DPM1, PMM2, ALG3, ALG9, PGM3 and
MPDUI) chaperones for misfolded ER proteins (for example, DNA/B11
and DNAJBC3); the ER stress-sensor IREla (ERNI) and the target of
its RNA processing activity, XBP1. Other molecules involved in ER

stress sensing and response (for example, CNPY2 (ref. 6) and DDI2)
orinvolved in transport of proteins from ER to the Golgi network (for
example, ATP2CI and SEC23B) are also preferentially essential for MM
cells (Extended DataFig. 1b,c).

Several genes preferentially essential for MM cells encode pro-
teins participating in proliferative/anti-apoptotic signaling cascades
(Fig. 1b), including the serine/threonine kinase PIM2; IKBKB (IKK-[3)
and CHUK (IKK-a), which are upstream of NF-kB TFs; members of the
IGF1R signaling cascade, including /GF1R itself, its downstream effector
IRS1 and the peptidases FURIN and CPD (carboxypeptidase D), which
regulate the cleavage of the IGFIR polypeptide to its mature form’;
and /IL6ST (gp130; a coreceptor for IL-6 and other cytokines). FGFR3is
alsoaMM-preferential dependency, probably reflecting MM cell lines
with t(4;14) chromosomal translocation, which that results in FGFR3
overexpression, and the highly infrequent nature of FGFR3 essential-
ity in other malignancies. Notably, STK11, a tumor suppressor in lung
cancer, its positive regulator CAB39 (ref. 8) as well as SIK3,a downstream
target of STK11and an upstream regulator of MEF2Cin other systems®,
are preferentially required for MM cells. Additional signaling-related
MM-preferential dependencies include the negative regulator of TGF-3
signaling SMAD7; ARHGAP45 (HMHAI) and ROCK1, which areinvolved
in regulation of cell adhesion and motility; and the CCM signaling
complex members CCM2, KRIT1(CCMI) and their downstreaminterac-
tor MAPK14. Finally, other genes preferentially essential for MM cells
include those encoding the mitochondrial regulator of apoptosis BCL2
and the mitochondrial E3 ligase MARCHS (MARCHFS); the E3 ligases
FBXO1I1and FEMI1B; and the nuclear transport proteins NUP37 and XPO4.

Molecular alterations of MM-preferential dependencies
We examined whether there are recurrent molecular alterations in
the genes preferentially essential for MM cells (as summarized in
Fig. 2). Among 834 genes overexpressed (log, fold change (FC) >1.0,
false discovery rate (FDR) <0.05) in MM versus non-MM cells lines (Can-
cer CellLine Encyclopedia (CCLE), Fig. 3a), only 4% (29) are among the
116 MM-preferential dependencies. Notably, six of these genes have
the greatest difference in essentiality scores in MM versus non-MM
cells. These include the lineage-defining TFs /IRF4 and PRDM1, as well
as POU2AF1, PIM2, MEF2C and CCND2. However, only a minority of
MM-preferential dependencies arein the top100-200 overexpressed
genes when ranked by log,FC (Fig. 3b) or FDR (Fig. 2, circle 8) in MM
versus other tumor types, and some MM-preferential dependencies
areless highly expressedin MM lines (Fig. 3a and Extended Data Fig. 3).
Similar observations were made when examining transcript levels for
these genes in MM versus non-MM patient tumor samples (Extended
Data Fig. 4a). Most MM-preferential dependencies are not overex-
pressed in MM versus normal PCs or more highly expressed in later
versus earlier stages of myelomagenesis (Extended Data Fig. 4b) and
donotconsistently correlate withadverse patient outcome (Extended
Data Fig. 4c), even under relaxed statistical criteria (Extended Data
Fig. 4d,e). Moreover, most MM-preferential dependencies were not
among the top overexpressed transcriptsin MM cells cocultured with
mesenchymal bone marrow stromal cells (BMSCs) (Fig. 2, circle13),an
interaction that attenuates MM cell responses to diverse therapies'® "2,
Only 10/116 MM-preferential dependency genes were mutated
in more than one of the MM cell lines (Extended Data Fig. 5a). Only
two MM-preferential dependencies (FGFR3 and IRF4, mutated in 2%

Fig.1|Myeloma-preferential dependencies identified by genome-scale
CRISPR-based gene-editing screens. a, Color-coded heat maps depict CERES
scores, as a quantitative metric of dependence of human tumor cell lines to each
gene in CRISPR/Cas9 gene-editing screens (AVANA sgRNA library). CERES scores
for MM lines (n =19) are depicted as a matrix (right side of graph) of cell lines

(in columns) and genes (in rows). For non-MM lines (n = 770), data are depicted
for each gene (row) in stacked bar graphs, which visualize the CERES score of each
gene in descending order (from left to right). Black or dark blue signifies negative

CERES scores compatible with pronounced sgRNA depletion of a given gene for
aspecific cell line. MM-preferential dependencies were identified on the basis of
average CERES scoresin MM cell lines <-0.2; difference in average CERES scores
inMM versus non-MM lines <-0.2; two-sided limma ¢-test with adjusted P value
(FDR) <0.05 for comparison of CERES scores; and additional criteria outlined
inMethods. b, Pie chart of the distribution of MM-preferential dependencies to
different functional groups, pathways or biological functions.
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Fig. 2| Integrated molecular profiling analyses for MM-preferential
dependencies. Circos plot summarizing results of integrated molecular analyses
for MM-preferential dependencies (more details in Figs. 3 and 4 and Extended
Data Figs. 3-6) to examine whether most of them are among the top genes with
most frequent molecular alterations (for example, mutations, DNA copy number
gains or differential expression) in MM cells. Concentric circles depict for each
gene: (1-2) fraction of MM (1; ‘ceres’) or non-MM (2; ‘ceresother’) lines with CERES
scores <—0.4; (3) fraction of MM lines with DEMETER scores <-0.4 (‘dem’); (4-6)
fraction of MM cell lines with non-synonymous mutations (4; ‘mut’; Extended
DataFig.5), CNV loss (5; ‘cnvdel’) or CNV gain (6; ‘cnvamp’) (Extended Data Fig. 5);
(7) fraction of MM cell lines with a super-accessible chromatin region annotated
by closest proximity to the gene of interest (‘access’). Circles 8-12 summarize
whether expression of agene s higherin (8) MM versus non-MM cell lines of CCLE

1-ceres
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4-mut
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(‘ccle’; Fig. 3 and Extended Data Fig. 3); (9) tumor samples from patients with MM
(CoMMpass study) versus non-MM patients (TCGA) (‘tcga’; Extended Data Fig. 4a);
(10) MM patient samples versus normal PCs (‘mm’; Extended Data Fig. 4b);

(11) plasma cell leukemia (PCL) or advanced MM versus early/newly diagnosed
MM (‘pcl’; Extended Data Fig. 4b); (12) patients with shorter PFS (‘pfs’; Extended
DataFig. 4c); and (13) when MM cells are cocultured with BMSCs (‘bmsc’) in
dataset GSE20540. For circles 8 and 9, transcripts with log,FC >1.0 and FDR <0.05
arein green or orange, if they rank (based on FDR), respectively, in the top 1-50 or
51-100 most upregulated genes (white depicts genes that did not satisfy all these
criteria). Each of the circles 10-13 integrates several individual comparisons
(Methods) and depicts (based on the color-coded scale) the fraction of these
comparisons with upregulation by log,FC >1.0 and FDR <0.05 and ranking (based
on FDR) in the top 100 most upregulated genes.

of patients) areamong the top 200 most frequently mutated genesin
patients with newly diagnosed MM (Fig. 4a). Furthermore, the large
majority of MM-preferential dependencies did not have higher fre-
quency of DNA copy number variation (CNV) gains, while some had
a higher rate of CNV losses, in MM versus non-MM cell lines (CCLE;
Fig.4b,c).In patient-derived MM samples, MM-preferential dependen-
cies are not enriched within regions of frequent large CNV gains (for
example, hyperdiploid chromosomes or chromosome 1q) or losses
(Fig. 4d,e). In patient-derived MM samples, MM-preferential

dependency genes did not exhibit a higher frequency of CNV gains
(Fig. 4e) or DNA copy number (Fig. 4f). Furthermore, only 5
MM-preferential dependencies are among the top 200 genes with the
highest frequency of CNV gainsin patient samples (Extended DataFig. 5b).
Regardingstructural variants (SVs) that resultin focal CNVs and complex
somatic events®, 45 regions, which harbor in total 475 genes evaluated
inour CRISPR screens, were recently identified” as hotspots for SVs that
cause gain of chromosomal material. Of these 45 regions, 8 contain 9 of
the 116 MM-preferential dependencies, namely IRF4 (and its neighboring
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Fig.3|Most MM-preferential dependencies do not rank among the top
overexpressed genes in MM versus non-MM cell lines. a, Scatter plot depicting
for each gene the log,FC of differential expressionin MM (n = 25) versus non-MM
(n=991) celllines in CCLE (x axis) versus average differences in CERES score
(yaxis, Supplementary Table 1) in MM versus non-MM lines in CRISPR gene-
editing screens (N =17,436 genes with matching gene symbols between CCLE
and CERES data). The plot highlights genes that are (1) preferentially essential
andinthe top N=200 overexpressed genes (log,FC >1.0, two-sided limma ¢-test,
FDR <0.05, ranking based on log,FC) in MM (blue circles); (2) the top N=200
overexpressed genes that are not preferentially essential in MM (red dots); (3) a
MM-preferential dependency thatis underexpressed (log,FC <-1.0, FDR <0.05)
in MM versus non-MM cell lines in CCLE (purple dot); (4) other MM-preferential
dependencies thatare notin the top N=200 overexpressed genes (black dots);
and (5) other genes (gray dots). b, Heat maps for MM (N =19 cell lines) (right;
matrix) and non-MM (N = 770 cell lines) (left; stacked bars) depict CERES scores of
the top N=200 most upregulated genes in MM versus non-MM cell lines (CCLE)
for whichboth transcript and CERES data are available (significantly upregulated
genes were ranked according to log,FC of differential expression, distinctly from
the FDR-based ranking of differentially expressed genes for Fig. 2). Gene symbols
are depicted for the minority of top upregulated genes that represent MM-
preferential dependencies. Gene expression data for awere accessed from the
initial CCLE portal, with concordant observations based on subsequent releases
of these data through DepMap portal.

DUSP22), POU2AF1, IRF2, PPCDC, CARMI, ZBTB38, PRDM1 and ZNF592
(Extended Data Fig. 5c,d). Notably, two MM-preferential dependencies
(MPDUI and PFAS) are located in a SV loss hotspot for MM (specifically
within17p (ref.13)). Overall, alimited number of MM-preferential depend-
encies may belocated inregions with structural rearrangements or copy
number alterations, but most MM-preferential dependencies do not rank
amongthe top genesinterms of the frequency of these eventsin MM or
their enrichmentin MM compared with non-MM.

Chromatin regions such as ‘super-enhancers’, defined by dense
TF binding, H3K27 acetylation and chromatin accessibility, facili-
tate gene expression critical for cell identity". To determine if such
gene regulatory features defined MM-preferential dependencies, we
examined chromatin accessibility (assay for transposase-accessible
chromatin using sequencing, ATAC-seq) in 12 MM cell lines with
a focus on MM-preferentially essential genes. This identified on
average five to six chromatin accessible regions within 100 kb of
the MM-preferential dependency genes, and these were modestly
enriched at super-accessible regions (Extended DataFig. 6a) that were
largely consistent across the 22 MM cell lines analyzed (Extended Data
Fig. 6b). Examples of these chromatin accessible regions can be found
at PRDM1, UBE2J1 and IRF4;inregions of the DUSP22 gene that may regu-
late nearby /RF4;and in POU2AF1 (Extended DataFig. 6¢-f). While 55/116
MM-preferential dependencies were <100 kb from a highly accessible
region, there were over 4,000 super-accessible regions covering over
3,400 genes, and therefore MM-preferential dependencies could not
be readily identified by chromatin accessibility alone.

Collectively, these data (Fig. 2) indicate that many MM-preferential
dependenciesidentified by CRISPR gene-editing screens are notamong
thetoprecurrently mutated, amplified or aberrantly expressed genesin
MM. This observationis concordant with data on preferential depend-
enciesinother malignancies, such as ER + breast, renal or colon cancer,
melanoma and acute myeloid leukemia (Supplementary Figs. 2-6).

MM encompasses several subgroups defined by molecular fea-
tures, such as chromosomal translocations involvingimmunoglobulin
gene enhancers or mutations/DNA copy number events in key onco-
genes or tumor suppressors. MM lines with translocations targeting
CCND1,CCND2,CCND3, MAF and FGFR3 or with KRAS or NRAS mutations
tend tobe dependent ontheserespective genes. Hierarchical cluster-
ingof MM cell lines according to the essentiality scores for preferential
dependenciesrevealed that four of five MM lines with MAF rearrange-
ment and another line with ectopic MAF overexpression were in the
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same branch of the dendrogram, while four lines with CCND1rearrange-
ment were in adjacent branches. Overall, however, clustering of lines
based on their essentiality scores for MM-preferential dependencies
asagroup does not distinguish molecular subtypes, perhapsreflecting
the limited numbers of lines from each MM subtype (Extended Data
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Fig.4|Landscape of single nucleotide variants and DNA copy number
variants for MM-preferentially essential genes. a, Frequency of non-
synonymous single nucleotide variants (SNVs) in N = 940 samples from patients
with MM (CoMMpeass study, IA17 release). MM-preferential dependencies

(as defined in Fig. 1a and Supplementary Table 1) are highlighted in blue.

b,c, Ranking of MM-preferential dependencies and other genes in terms of
statistical significance (FDR and two-sided Fisher’s test) of the frequency of

CNV gains (b) or losses (c) in MM (n = 33) versus non-MM (n =1721) lines of CCLE
panel (based on data and annotation from DepMap 22Q1 release, concordant
observations with other releases). d, Frequency of MM-preferential dependencies
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21) in MM. e, Frequency of CNV gains in CoMMpass samples for MM-preferential
dependencies and all other genes stratified by hyperdiploid (HD) chromosomes,
chromosome 1q and other. f, Average DNA copy number in CoMMpass samples for
MM-preferential dependencies versus other genes stratified by HD, chromosome
1q, other, chromosome 1p, chromosome 17p and chromosome 13q. Pvalues are
from two-sided Fisher’s exact test (d) or two-sided Mann-Whitney Utest (e and f).
Panels e and fevaluated N = 932 patient samples for 19,054 genes with DNA copy
number data available in the CoMMpass study (IA15 release).

Fig. 6g) and aneed for gene-editing studiesin larger panels of MM lines
in order to better define subtype-specific MM dependencies.

MM dependencies: shared or distinct roles in other cancers
The 116 genes we identified are preferentially, but not necessarily
exclusively, important for MM cells. Several of them are recurrently

essential in other neoplasias, for example, EP300, MARCHFS, CBFB,
MBNL1,DOTIL or FURINin leukemia (Extended Data Figs. 7 and 8a-e),
while /RF4isimportant for lymphomaand a subset of melanomalines
(Extended Data Fig. 8a). Notably, though, the essentiality scores for
the MM-preferential dependencies define a tight cluster of MM lines
distinct from all non-MM, including other hematologic, cell lines in
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Fig. 5| CERES scores for reported substrates or targets for thalidomide
derivatives. a, Heat maps depict CERES scores for known/proposed substrates
or targets of thalidomide derivatives. Results as depicted as amatrix for N =19
MM cell lines (right side of graph) and stacked bar plots for N = 770 non-MM cell

lines (with format and color coding similar to other figures, for example, Fig. 1a).

Gene symbols (for N =39 genes) are highlighted in red for MM-preferential
dependencies whose protein products are known (/IKZF1 and IKZF3) or recently
proposed (ARID2) neosubstrates for thalidomide derivatives; black for ‘core
essential’ genes; blue for genes that are not ‘core essential’ or MM-preferentially
essential and have CERES scores <-0.4 in >2 MM lines tested; and gray or orange

for other known or reported CRBN neosubstrates/targets of thalidomide
derivatives. b, Dot plot depicting for each gene the -log,,FDR (Limma ¢-test) for
comparison of CERES scores in MM (N =19 cell lines) versus non-MM (N = 768
celllines) (yaxis) versus the difference in average CERES scores in MM versus
non-MM cell lines (x axis) (N =18,119 genes, also see Supplementary Table1).
Genes whose protein products are known or proposed targets/neosubstrates of
thalidomide or its derivatives are highlighted in red dots and those genes (IKZF3,
IKZF1and ARID2) that also meet the criteria for MM-preferential dependencies
are highlighted by their symbols.
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the t-distributed stochastic neighbor embedding (¢-SNE) clustering
analysis (Extended DataFig. 8b,c). Applying in other neoplasias across
the DepMap dataset the criteria we used to define preferential depend-
encies for MM, we identified genes previously known to be essential for
tumors of different lineages including CTNNBI for colorectal or ESRI,
FOXAI and SPDEF for ER + breast cancer (Supplementary Figs. 2-6).
However, in general, non-MM tumor types had fewer preferentially
essential genes, eventhose withgene-editing screensin higher numbers
of cell lines than MM (Extended Data Fig. 8a,d).

The high number of MM-preferential dependencies might not
reflect solely biological differences between malignant hematopoietic
andsolid tumor cellsbut a specific set of vulnerabilities associated with
PCbiology. Consistent with this notion, 68 MM-preferential dependen-
ciesweremore essential to MM cells than tonon-MMblood cancer cell
lines (difference in average CERES scores <—0.2, FDR <0.05; Extended
DataFig.8e). Gene editing withasubgenome-scalelibrary thatincluded
single guide RNAs (sgRNAs) for 89 MM-preferential dependencies was
performedintwo cell lines representing Waldenstrém'’s macroglobu-
linemia (WM), alymphoplasmacyticlymphoma, whichisrelated to MM
butalso has several distinct biological and genetic features. Disruption
of 28 MM-preferential dependency genes had no effect on either WM
cell line, and 40 additional MM-preferential dependencies were not
essentialin one of the WM lines (Supplementary Fig. 7a-c), highlight-
ing the distinct pattern of genetic vulnerabilities of MM, even when
compared with a closely related malignancy.

Some genes do not meet all criteria for designation as preferential
dependenciesin MM when compared with all other non-MM (heme or
solid) tumor lines but are more essential in MM versus B-cell lymphoma
orin MM versus solid tumor lines (Extended Data Fig. 8f-j). Several of
these genes function in similar pathways as some MM-preferentially
essential genes, such asthe ER-associated degradation (ERAD)-related
genes ERLECI, STT3A, UFL1 and UFM1 that are more essential in MM
versus B-cell ymphomas (Extended Data Fig. 8i,j). IKZF1, IKZF3 or
BCL2, which can be therapeutically targeted, are more essential for
MM compared with all non-MM lines, but have a similar importance
for B-cell ymphomas. Conversely, some genes such as PIK3CA are
more essential for MM versus B-cell ymphomas, but are similarly
critical for all other non-MM cell lines (Extended Data Fig. 8i,j) and
have notyet proved tobe clinically actionablein MM. These examples
highlight that defining differential dependencies for MM cells may
provide distinctinformation depending on the comparator group, for
example, allnon-MM tumor cells or specific hematologic malignancies:
the latter comparisons inform about potential biological differences
in MM versus the respective neoplasias and warrant studies in larger
cellline panels.

Further highlighting their distinct roles in MM, several
MM-preferential dependencies functionas tumor suppressorsinothers
diseases, for example, FBXO11 (ref.15) or PRDMI (ref.16) inlymphoma;
or STK11,CAB39 and TSC2in many cancers”. This seemingly paradoxical
observation may relate to the biology of PCs and the functional rela-
tionships of these genes with other MM-preferential dependencies. For
instance, CERES scores for TSC2and several other negative regulators
of mTORCl1 signaling (for example, DDIT4, DEPDCS5 and NPRL2) exhibit
positive correlationin MM and other lines (Supplementary Fig. 7d-g),
concordant with the TSC1/2 complex as negative mTORC1 regulator
in MM cells. RHEB, direct downstream target of TSC1/2 and positive
regulator of mTORCI, has higher CERES scoresin MM versus other cell
lines (Supplementary Fig. 7h,i). Therefore, disruption of the TSC1/2
complex leading to hyperactive mTORCI can drive growth of other
celltypesbutalso leads to increased ER stress™, to which MM cells are
particularly susceptible. Recent studies in leukemia’ reported that
STK11 activates SIK3 and SIK2, which in turn activate MEF2C, another
gene preferentially required by MM (Supplementary Fig. 7j,k). These
examples suggest that cell lineage is critical for interpretation of gene
essentiality screens.

Preferential dependencies previously implicated in MM
Several MM-preferential dependencies (/IRF4 (ref. 5), MAF, CCND2,
IKZF3, IKZF1 and NFKB) have known roles in MM, but limited, if any,
prior formal evaluation of their preferential essentiality in MM com-
pared with other cancers. We examined the patterns of essentiality of
genes targeted by IRF4 (ref. 5) (Supplementary Fig. 71 and Extended
DataFig.9a) or IKZF1 and IKZF3 (ref."°) (Extended Data Fig. 9b) in MM.
Each of these TFs regulates in MM cells genes that represent distinct
clusters, including genes essential across all tumor types; genes with
recurrent proliferative, anti-apoptotic or oncogenic roles across many
cancers (for example, regulation of KRAS by IRF4); and genes that indi-
vidually are not required for growth of MM or other cancer cell lines.
Notably, several putative IRF4 targets (for example, PRDM1, PIM2, BCL2,
UBE2J1 and CCDC134) are themselves MM-preferential dependencies
(Extended Data Fig. 9a, based on data from Figs. 1and 2), which may
explain why IRF4 disruption is so disadvantageous to MM cell fitness.
MM-preferential dependencies also include targets for anti-MM
therapies, including the thalidomide derivative targets IKZF3 and
IKZF1(refs.20,21) and arecently identified CRBN neosubstrate ARID2
(ref.22), but not other CRBN neosubstrates® > (Fig. 5). Genes required
for MM cell fitness also include those encoding molecules mediating
the anti-MM activity of PIs such as members of the NF-kB pathway*
and regulators of ER-associated protein degradation. These results
are concordant with the fact that the clinical effects of thalidomide

Fig. 6 | Biological role of POU2AF1in MM cells. a,b, Relative number of

viable cells after Doxy-inducible CRISPR interference (CRISPRi) (KMS11 cells,

11 days after sgRNA transduction) (a) or CRISPR activation (CRISPRa) (LP-1
cells, 19 days after sgRNA transduction) (b) of POU2AFI versus control OR
genes. CTG assays, N=8(a) or N=6 (b) independent replicate cell cultures

per condition; mean + standard error of the mean (s.e.m.), one-way analysis of
variance (ANOVA) and Tukey’s post-hoc test (detailed results in source data),
P<0.001for each POU2AFI sgRNA versus OR gene sgRNA). ¢—f, Transcriptional
signature of POU2AFI overexpression in LP1MM cells: volcano plot of transcripts
differentially expressed in LP1cells with CRISPR activation of POU2AF1 versus
OR controls (blue line denotes FDR = 0.05) (c); HLA class Il transcript levels
with POU2AFI activation versus control (d); TF DNA-binding motifs enriched
insites of chromatin binding of POU2AF1, where top ten most statistically
significant motifs (in black) include POU2AF1 partner Oct2 (POU2F2), whereas
others include motifs for TFs relevant to MM, such as Myc, PU.1-IRF, NF-kB,
PRDM1 and CREBS, which s overexpressed with POU2AF1 activation (e); GSEA
plots examining the transcriptional signature of POU2AFI activation identify
enrichment for genes previously determined as targets of IRF4, IKZF3, IKZF1

or Myc (P<0.001, for each plot) (f). g-1, POU2AF1 binding motifs are enriched
inchromatin accessible regions near select MM-preferential dependencies:

ATAC-seq signal at POU2AF1 binding motifs in 12 MM DepMap cell lines (top),
with the POU2AF1 consensus binding motif shown (bottom) (g); MM-preferential
dependencies with significant enrichment of POU2AF1 binding motifs in
chromatin accessible regions (odds ratio of enrichment lines denoting 95%
confidence intervals shown, Fisher’s exact test) (h); correlation of transcript
levelsin N =768 newly diagnosed primary MM specimens (CoMMpass study,
IA15 release) for POU2AFI expression with genes downregulated (down), not
significantly changed (none) or upregulated (up) by CRISPR activation of
POUZ2AFI (i); correlation of POU2AF1 expression with transcript levels of
MM-preferential dependencies (MM-Dep; N =116 genes) or all other N = 55,092
genes (two-sided t-test for i and j; box plots denote median, lower/upper
quartiles, with whiskers extending up to 1.5 times the interquartile range of the
box) (j); gene expression correlation between POU2AFI (x axis) and IRF2 (y axis)
in N=768 patient samples (CoMMpass study IA15 release), with significance
determined by edgeR and FDR corrected), and gene expression measured

in fragments per kilobase per million reads (FPKM) (k); genome plot of IRF2
showing MM chromatin accessible regions (MM peaks), POU2AF1 consensus
binding motifs (POU2AF1) with motifs overlapping accessible chromatin (red),
and a composite ATAC profile of 12 MM lines (I).
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derivatives and Pls are mostly limited to PC malignancies. HDAC1 and
BCL2 are also MM-preferential dependencies, consistent with the
activity of inhibitors against these targets in clinical trials. IGFIR and
members/regulators of its pathway (for example, IRS1 and FURIN?)
are also MM-preferential dependencies, consistent with the greater
preclinical activity of IGFIR inhibitors against MM compared with other
celltypes®**. These data suggest that other genes identified from this
study may have therapeutic relevance.

Invitro studies supporting CRISPR screen results

MM lines harboring doxycycline (Doxy)-inducible SpCas9 were trans-
duced with sgRNAs directed against MM-preferential dependencies
including PIM2, MEF2C, TCF3 and DOTIL. Doxy treatment led to sig-
nificant depletion of MM cells transduced with these sgRNAs (Sup-
plementary Fig. 8a,b) compared with control sgRNAs for olfactory
receptor (OR) genes, which are not expressed in MM*®. As an orthogo-
nal validation of the gene disruption screening results, treatment of
MM lines with antagonists for the methyltransferase CARM1 (PRMT4)
(refs.37,38), the CBFB TF*, the SIK kinases (including SIK3) or PIM
kinases (including PIM2) decreased the relative viability of MM cells
(Supplementary Fig. 8c-e). Additional validation of genome-scale
CRISPR studies was offered by data from pharmacological screens
(Supplementary Fig. 8f,g). Inhibitors against the products of several
genes preferentially essential for MM were more active against MM lines
compared to lines from solid tumors or other hematologic malignan-
cies. These included ‘positive controls’ such as lenalidomide (target-
ing IZKF1 and IZKF3), bortezomib (targeting ER function or NF-kB);
andinhibitors for BCL-2, IKK1/IKK2 (CHUK/IKBKB), IGFIR, HDACl and
NAMPT (Supplementary Fig. 8f,g).

POU2AFI, an essential transcriptional cofactor for MM cells

Theroles for many MM-preferentially essential genes were previously
only modestly explored. One example is POU2AF1, encoding the OCA-B
transcriptional cofactor. Prior studiesin MM suggested that POU2AF1
regulates expression of BCMA (TNFRSF17) (ref. 40); TCR-engineered
T cells recognizing POU2AF1 peptides can have therapeutic applica-
tions*; while elevated POU2AF1 protein levels correlates with adverse
prognosis*’. However, the role of POU2AF1 as a dependency in MM has
been understudied. POU2AFI was the most preferentially essential
gene encoding a transcriptional cofactor in MM (Fig. 1) and was also
essential for several MM cell lines in shRNA studies (Extended Data
Fig.2c,d). Depletion of POU2AF1 protein levels through Doxy-inducible
CRISPRinterference (Extended DataFig.10a) decreased MM cell growth
(Fig. 6a), while CRISPR-based activation of POU2AF1 (Extended Data
Fig.10b) stimulated growth of LP-1 MM cells (Fig. 6b and Extended
Data Fig. 10c). POU2AF1 overexpression also triggered upregulation
(Fig. 6¢) of other MM-preferential dependencies (for example, PRDM1,
SUPT7L and UBE2G2), TSC1, KRAS and other genes implicated in the

pathogenesis of MM or other cancers (for example, FGFR3, RUNX2
(ref. 43), SMO, MEF2D and PCGF2); and downregulation of CDKNIC
(Fig. 6¢), encoding a cyclin-dependent kinase inhibitor. POU2AF1
overexpression also led to downregulation of MHC class Il molecules
(Fig. 6d) and their transcriptional activator C//TA (Fig. 6¢c), suggesting
potential roles of POU2AF1inimmune evasion.

ATAC-seq indicated that chromatin surrounding the POU2AF1
locus was highly accessible in MM cells (Extended Data Fig. 6e),
concordant with its consistent expression (Extended Data Figs. 3
and 4a). Motif analysis of data of chromatin immunoprecipitation
followed by sequencing for POU2AF1 (GSE79480) identified overlap
with DNA-binding motifs for POU family TFs such as OCT2 (POU2F2),
thebinding partner of POU2AF1, members of the ETS family and other
TFswithrolesin MMincluding c-MYC, IRF4, NF-kB, PRDM1and RUNX2
(Fig. 6e), suggesting that POU2AF1 may act as a cofactor for these
factors. In further support of this notion, gene set enrichment analy-
ses (GSEAs) showed that the transcriptional signature of POU2AF1
overexpression is enriched for genes regulated by MM TFs such IRF4,
IKZF1,IKZF3 and MYC (Fig. 6f). Motifs associated with POU2AF1 bind-
ing are also enriched near the transcriptional start site of several
MM-preferential dependencies including POU2AF1 itself, BCL2, IRF2
and /RS1 (Fig. 6g,h). Genes correlating with POU2AF1 expression in
MM cells across 768 patients with newly diagnosed MM were enriched
among the genes upregulated by CRISPR activation of POU2AF1in the
LP1MMcellline, suggesting that many are bona fide POU2AF1targets
(Fig. 6i). POU2AFI expression was also correlated with expression of
the 116 MM-preferential dependenciesin MM patient samples (Fig. 6j),
as exemplified by IRF2 (Fig. 6k), with multiple POU2AF1 binding sites
inthe accessible chromatin regions of this gene (Fig. 61). POU2AF1, like
IRF4, may be critical for MM cell fitness due to its ability to stimulate
expression of other genes essential for MM proliferation and survival.

ER genes preferentially essential for MM

ERAD for unfolded proteins represents an important biological vul-
nerability for MM cells, given the proteostatic stress associated with
immunoglobulin production®**. Multiple genes preferentially essential
for MM encode previously underappreciated components of the ERAD
system (Fig. 1and Extended Data Fig. 1b,d). Doxy-inducible CRISPR
knockout (KO) of UBE2J1 (Fig. 7a and Extended Data Fig. 10d), SYVNI
(Fig. 7b) or HERPUDI (Fig. 7c) validated observations from gene-editing
screens in the respective cell lines (Fig. 1). Accordingly, HERPUDI KO
affected viability of KMS18 cells, but not OCI-My5 cells (Fig. 7b). Moreo-
ver, in acompetition assay of KMS18 cells harboring Doxy-inducible
SpCas9and sgRNA against UBE2/1 or an OR (OR2D12) negative control,
UBE2J1KO cells were outcompeted by control cells only inthe presence
of Doxy (Fig.7d). While there are no small molecule inhibitors for UBE2J1
or HERPUD], LS-102, an inhibitor of SYVN1, inhibited growth of MM
cell lines at micromolar concentrations (Fig. 7e). Consistent with the

Fig. 7| Biological role of UBE2J1 and other ER-associated MM-preferential
dependencies. a-d, Doxy-inducible CRISPR KO of ER-associated MM-
preferential dependencies or control OR genes in KMSI18 (a, c and d) or OCI-My5
(b) MM cells. Cells were cultured with or without Doxy (14 daysina-c; 14 or

28 daysind).Ina-c, cell viability was evaluated by CTG (mean * s.e.m.), one-way
ANOVA and Tukey’s post-hoc tests (see source data) at P < 0.001 for each ER
gene sgRNA (except HERPUDI inb) versus each of the OR sgRNAs; 80, 32 and
40independent replicate cell cultures/sgRNA in a-c, respectively. Ind, KMS18
cells with Doxy-inducible SpCas9 and transduced with sgRNA against UBE2J1

or OR2D12were mixed at a 9:1ratio, respectively, ina competition assay. INDEL
analyses (at days 14 and 28) calculated the relative percentage of cells with
CRISPR-induced frameshift mutations of UBE2J/1. e, In vitro treatment with SYVN1
inhibitor LS-102 (5 days; vertical dotted line represents reported in vitro half
maximal inhibitory concentration (ICs,) for inhibition of this target). CTG; mean;
biological replicates N=30 independent replicate cell cultures for drug-free
controlsinbothlines, n =3 or 4 independent replicate cell cultures, respectively,
inL363 and KMS27 MM cells for each drug dose; nonlinear curve fitting with

variable slope (four parameters). f, Immunobloting for BiP, amarker of ER stress,
in KMS18 cells with Doxy-inducible CRISPR KO of UBE2/I or control OR gene,
cultured with versus without Doxy. g,h, In vitro bortezomib treatment (24 h)

of KMS18 (g) or OPM-2 (h) cells with Doxy-inducible CRISPR KO of HERPUDI or
control OR genes. (CTG; mean +s.e.m.; n = 8independent replicate cell cultures
for drug-free controls and n = 4 independent replicate cell cultures per drug
dose for each KO; two-way ANOVA (P < 0.001); detailed results of Tukey post-
hoc tests in source data). i, Schematic figure of ER-associated dependencies.
MM-preferential ER dependencies (blue symbols) involve ER membrane protein
complexes mediating dislocation of misfolded ER proteins to cytosol (for
example HERPUDI and SEL1L) and associated ER-specific E2/E3 enzymes (SYVNI,
UBE2J1and UBE2G2); enzymes (for example, DPM1, ALG3 and ALG9) required for
N-glycan-dependent surveillance of quality control for luminal ER glycoproteins;
chaperones (for example, DNA/B11 and DNAJBC3) for BiP complexes with
misfolded proteins; and the known ER stress-sensor IRE1a (ERNI) and its
downstream TF XBPI.
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role of UBE2J1in ERAD, UBE2J1 KO led to induction of the heat shock
protein BiP,amarker of ER stress (Fig. 7f). Inareanalysis of aretroviral
gene-trap mutagenesis screen and a gene-editing screen for genes
involved in ERAD regulation in KBM7 haploid cells*, UBE2/1 was one of
the top hits, together withits partnersin the ER dislocon (HERPUDI and
SYVN), that facilitates translocation of misfolded proteins from the ER
lumentothe cytoplasm (Extended DataFig.10e). Given that Plsinduce
ER stress in MM, we examined whether disruption of ER-associated
genes preferentiallyimportant for MM could enhance response to Pls.
Insupportofthis notion, inducible KO of HEPRUDI further decreased
viability of MM cell lines treated with bortezomib (Fig. 7g,h), while KO
of SYVNIhad a more modest effect (Extended Data Fig. 10f). The vari-
ableimpactthat perturbation of different ER-associated genes has on
MM cell response to proteasome inhibition may reflect diverse roles
of these proteins in ER function. Collectively, these data support an
important role in MM cells for a series of ER-associated genes (Fig. 7i)
that may represent additional targets to enhance efficacy of Pls.

The patterns of essentiality of all ER-associated genesin MM ver-
sus other cancers (Extended Data Fig. 10g) reveal that a minority are
‘core essential’ genes (Extended Data Fig. 10g, top); and a large pro-
portion are essential for few, if any, cancer cell lines (Extended Data
Fig. 10g, bottom). Additionally, we identified ER-associated genes
that do not meet all criteria for MM-preferential dependencies and
arenot broadly essential across all cancers, but are essential for many
MM cell lines (Extended Data Fig. 10g,h). These latter genes encode
for ER proteinsinvolved in dislocation of misfolded ER proteins to the
cytosol (AUP1, AMFR and RNF139); or in N-glycan-dependent quality
control for luminal ER glycoproteins (ALG12, ALG6 and ALGS8): these
additional ER-associated genes may also represent candidate thera-
peutic targets for MM.

Invivo studies confirm role of MM-preferential dependencies

We examined if MM-preferential dependencies identified in vitro
were also essential for MM cells grown in vivo within abone marrow
(BM)-like scaffold system engineered to simulate the human marrow
microenvironment*® and enhance MM growth. Bicalcium phosphate
scaffolds were populated ex vivo with primary human mesenchymal
BMSCs under conditions favoring osteogenic differentiation (ref. 46
and Supplementary Fig. 8h). Scaffolds were subcutaneously implanted
into NOD-scid gamma (NSG) mice and injected with KMS11 or XG7
SpCas9* MM cell lines transduced with a focused sgRNA library tar-
geting 89 MM-preferentially essential genes, genes with broad roles
across many tumor types and controls. Analysis of sgRNA distribution
of tumors recovered from the mice revealed that a large majority of
MM-preferential dependencies identified in vitro were also essen-
tial for MM cells in vivo. For example, among the 57 MM-preferential
dependencies with CERES scores <—0.4 in KMSI11 cells in vitro, their
large majority exhibited depletion of their cognate sgRNAs in vivo
(average log,FC <-1.0 and depletion of three to four of four sgRNAs;
Fig. 8a,b). These included genes encoding TFs/cofactors (for exam-
ple,IRF4, PRDM1, POU2AF1, RELB and MAF); epigenetic regulators (for
example, CARMI); kinases upstream of NF-kB (CHUK and /[KBKB); and ER

regulators. Core-essential genes and broad-spectrum oncogenes essen-
tialinvitro (MYC, CFLAR and CDK7 on both lines; KRASin XG7) remained
essentialin vivo; while PTENKO cells were enriched consistent with the
tumor suppressive role of this gene (Fig. 8c). Overall, the large majority
of MM-preferential dependencies examined were essential for MM cell
growth in vivo of either KMSI11 or XG7 cells; and most were essential
for both lines (Fig. 8c). KO of several genes had a greater effect in vivo
thanin vitro. For instance, BCL2, the ER-associated genes HEPRUDI,
ALG9 and DPM1I; and the TF TCF3 (a gene examined with individual
sgRNAsinanother MM linein vitro; Supplementary Fig. 8) had in vitro
CERES scores in the range of or greater than -0.40 in KMS11 cells, but
sgRNAs for these genes were depleted in the in vivo setting (Fig. 8a).
These observations indicate that most MM-preferential dependencies
identifiedinvitroare also required when MM cells interactin vivo with
a highly supportive microenvironment.

Discussion

Recent advancesin MM treatment have relied on therapeutics that are
primarily effective against PC neoplasias. This preferential anti-MM
activity could not have beenreadily predicted by the genomic charac-
terization of MM cells, as these agents do not target mutated oncogenes
or the malignant state of MM PCs but rather pathways critical for PC
biology. This was originally recognized for thalidomide derivatives and
PIs' and also applies for subsequently developed therapies targeting
the preferentially high expression of CD38, BCMA or GPRC5D on PCs,
malignant and normal. Notably, some of the most successful antican-
cer therapies also target both malignant and normal cells of lineages
dispensable for survival of adult patients, sparing other tissues and
avoiding major life-threatening complications. Such lineage-specific
therapies include rituximab for lymphomas, hormonal therapies for
prostate or breast cancer or radioactive iodine for thyroid carcinoma.
The profound impact of lineage-specific treatments in MM and beyond
prompted usto functionally ascertain, through genome-scale CRISPR
screens, genes that are preferentially essential for MM compared with
the overwhelming majority of neoplasias from other lineages.

Reassuringly, several MM-preferential dependencies identified
inthis study are known regulators of MM biology (for example, IRF4)
or targets/mediators for therapies with preferential clinical activity
against MM/PC neoplasias. Among diverse proposed mediators of
anti-MM activity of thalidomide derivatives, IKZF3, IKZF1 and ARID2
emerged as MM-preferential dependencies. Prior work primarily cen-
tered on IKZF1 as the critical target of thalidomide derivatives, but
our present study identifies more pronounced and recurrent MM
cell dependence on /KZF3. ARID2 is a CRBN neosubstrate with poma-
lidomide, but not lenalidomide, treatment*. Our observations sug-
gest that additional emphasis is warranted on IKZF3, ARID2 and their
downstream effects.

In terms of the pronounced activity of Pls against PC neoplasias
(versus limited activity against most other tumor types), the precise
mechanistic contribution of NF-«B inhibition versus ER stress had
remained an unanswered question. Our study points to a contribu-
tion of both pathways, because MM cells are, compared with other

Fig. 8 |Invivo studies to validate the role of key examples of MM-preferential
dependenciesidentified in vitro. a, Results from study of KMS11 cellsin the
‘humanized’ BM-like scaffold-based in vivo model using a single-gene CRISPR KO
system. The graph depicts, for each gene (N = 88 MM-preferential dependencies
withinvitro CERES scores of <0.4 in KMS11 cells), the log,FC of averaged read
counts for each of their sgRNAs (blue dots for individual values; red bar for
average). The region highlighted in gray delineates the upper and lower limit of
the 95% confidence intervals for log,FC of averaged read counts for sgRNAs of
OR genes as controls. Genes for which their sgRNA log,FC are outside the 95%
confidence intervals for the OR gene sgRNAs were considered to have depletion
or enrichment. Gene symbols for MM-preferential dependencies with CERES
scores <—0.4in KMS11in vitro areindicated in dark blue versus light blue if these

genes did versus did not exhibit, respectively, depletion of three to four out of
four sgRNAs per gene in vivo. MM-preferential dependencies with CERES

scores >-0.4in KMSl1linvitro are indicated in dark green versus light green, if
these genes did versus did not exhibit, respectively, depletion of three to four
sgRNAs per genein vivo. b, Average log,FC of read counts for sgRNAs of N =184
genes (four sgRNAs per gene) in KMS11 cells in the in vivo ‘humanized’ BM-like
scaffold-based model (V=5 mice) (y axis) and their respective CERES score in
KMS11 celllinein vitro (x axis). ¢, Scatter plot of average log,FC of read counts for
sgRNAs of genes examined through subgenome-scale focused CRISPRKO study
of the KMS11 cells (N = Smice) (y axis) versus XG-7 cells (N = 8 mice) (x axis) in the
in vivo ‘humanized’ BM-like scaffold-based model.
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neoplasias, preferentially dependent on both NF-kB pathway genes and
ER regulators. The latter include molecules with previously underap-
preciated rolesin MM, including the ER-resident E2 ligase UBE2J1 and
E3 ligase SYVNI; or their ER-to-cytosol retrotranslocation partners
SEL1L and HERPUD1, which contribute to the quality control system
for misfolded proteins in the ER. These proteins and their respective
complexes may represent therapeutic targets in MM.

The identification of BCL2, HDACI and PIM2 as MM-preferential
dependenciesisalsonotable, giventhat BCL2 inhibitors have promis-
ing clinical activity in a subset of MM patients*’; and broad-spectrum
inhibitors of class |HDACs*® or PIM kinases* have exhibited activity in
clinical studies inMM, but only limited clinical efficacy in other settings.

By this logic, other MM-preferential dependencies could repre-
sent putative therapeutic targets. Many transcriptional/epigenetic
regulators identified in this study have received limited attention as
therapeutic targets in MM. Others (for example, DOTIL (ref. 50) or
CARMI (ref. 51)) have been targeted therapeutically in preclinical MM
studies that, however, did not comprehensively compare the role of
these targets in MM versus other cancers. A translational implication
of our study is that selective direct inhibitors of the expression of
MM-preferential dependencies or function of their product(s) merit
preclinical and clinical evaluation in MM, without excluding possible
applicationsin other neoplasias. Our data do not imply MM-‘exclusive’
essentiality for these genes, as several are also recurrent/preferential
dependencies for other malignancies. However, a large fraction of
MM-preferential dependencies do not exhibit a similar role in other
hematologic neoplasias and some were even reported as tumor
suppressors in other lymphoid malignancies (for example, FBXO11
(ref. 52) and PRDMI (ref. 16)) or solid tumors (for example, STK11 and
TSC2). Examining other neoplasias, beyond MM, for their respec-
tive preferential dependencies, identified some known examples of
dependenciesrelated to the respective cell of origin, but overall fewer
genes per disease compared with those identified for MM. This may
reflect the highly distinct molecular network that is essential for the
MM cells and their identity as PCs, specifically their status as highly
secretory cells, which require high levels of ER function, as well as
distinct transcriptional, epigenetic and signaling vulnerabilities, com-
pared with most other tumor types. Collectively, MM-preferential
dependencies cannot be attributed exclusively to biological differ-
ences between blood cancers versus solid tumors but may reflect the
major underlying differences in the molecular network of MM cells
compared with all other cancers.

The identified MM-preferential dependencies vary in terms
of the fraction of MM lines dependent on each gene or the magni-
tude of essentiality scores. Future studies in larger panels of MM
lines may reveal molecular determinants of these differences, for
example, if any of these genes are preferential to individual MM sub-
types, defined by either genomic or CRISPR-based functional crite-
ria. Some MM-preferential dependencies defined by CRISPR are also
apparent in shRNA studies, but others are not, perhaps reflecting a
more pronounced and less variable suppression of gene function
by CRISPR-based gene-editing. Time-course studies may provide
important additionalinsights on the kinetics and the cytostatic versus
cytocidalimpact of CRISPR KO of MM-preferential dependencies and
whether during the course of a CRISPR screen tumor cells ‘re-wire’ to
accommodate the loss of such genes.

Ourinvivostudies validated the large majority of MM-preferential
dependencies identified in vitro. Additional genes may conceivably
be preferentially essential for MM cells in vivo but not in vitro. Inter-
action with the BM milieu may alter the patterns of dependencies
in MM cells, as evidenced by our observation that some genes were
more essential for growth in vivo than growth in vitro. Future studies
will probably define microenvironment-related in vivo dependencies
(for example, growth factor receptors or cell adhesion molecules
critical for cell-cell interactions) in models that faithfully simulate

the support ofthe local BM milieu on MM cells and ideally involve local
production by human stromal cells of cytokine/growth factors since
many murine cytokines do not react with the human receptors. Our
xenograft studies in immunocompromised mice could not examine
the impact of MM-preferential dependencies on immune recogni-
tion. Notably, activation of POU2AF1, one of the top MM-preferential
dependencies, was associated with decreased expression of MHC class
IImolecules, while other MM-preferential dependencies (for example,
MPDUI and ARID1A) influence tumor cell responses to natural killer
cells®***, Therefore, at least some MM-preferential dependencies could
have pleiotropic roles beyond the cell autonomous regulation of MM
cell survival and proliferation.

MM cell behavior is shaped by their intrinsic ‘PC biology’ and their
superimposed ‘cancer biology™: comprehensive understanding and
therapeutic targeting of both aspects is warranted'. By comparing
dependenciesin MM versus all other malignancies, our study addresses
this former aspect of ‘PC biology’ of MM and yields many previously
underappreciated targets that do not require genomic perturbations
in order to serve as essential genes and candidate therapeutic vul-
nerabilities for MM. Indeed, the large majority of MM-preferential
dependencies are not among the top genes in terms of the frequency
of mutations or DNA copy number gains in MM, are not necessarily
locatedin highly accessible regions of chromatinand are notamongthe
top differentially expressed genesin MM versus other neoplasias. Con-
versely, most genes overexpressed in MM cells (compared with other
tumor types) are not essential for MM cells. Collectively, our study
identifies MM-preferential dependencies, most of whichwould notbe
readily identified as MM driver genes with highly recurrent genomic
perturbations, and thus is complementing the long-standing efforts
to define therapeutic targets for the ‘cancer biology’ aspect of MM.

For nearly two decades, research on MM and other malignancies
focused on profiling of tumor cell lines and patient samples for altera-
tionsin their genome, transcriptome, epigenome and proteome, with
the hope that molecules with the most recurrent or pronounced dys-
regulation could represent attractive therapeutic targets. Our study
highlights that CRISPR-based functional genomics approaches**>*¢,
by directing assessing the impact of gene perturbation on tumor cell
fitness, canidentify genes critical for tumor cells fromaparticular cell
lineage and define promising therapeutic targets not readily identifi-
able on the basis of alterations in the tumor genome, transcriptome
orepigenome.

Methods

This research complies with all relevant ethical regulations. In vivo
studies were performed according to a protocol approved by the
Dana-Farber Cancer Institute (DFCI) Institutional Animal Care and
Use Committee (IACUC).

Celllines

Details about the cell lines examined in the genome-scale CRISPR-
Cas9 gene-editing studies are available at https://depmap.org/portal/.
Information aboutlines used in additional experimentsisincludedin
Supplementary Table 2. Celllineidentity was validated by short tandem
repeat analysis, and cultures were regularly tested for Mycoplasma.

CRISPR-based genome-scale screens

Genome-scale CRISPR-Cas9 screens were performed inhuman MM and
other cell lines stably transduced with lentiviral vector pXPR-311Cas9,
selected with blasticidin and then infected with a lentiviral library
of 76,106 sgRNAs (AVANA) targeting 17,670 genes protein coding
(-4 sgRNAs per gene) and including 995 nontargeting control sgRNAs.
Cells were selected in puromycin and blasticidin for 7 days and then
passaged without selection (with target representation of 500 cells
per sgRNA) for 21 days. Genomic DNA was purified from endpoint cell
pellets, sgRNA barcodes were PCR amplified with sufficient gDNA to
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maintain representation, and PCR products were sequenced using
llluminaprotocols as described®*. Data processing and quality control
was performed asin previous studies**>***®, CERES scores, a metric of
relative essentiality of an individual gene in a given cell line, were cal-
culated asinref.55to correct for gene-independent DNA copy number
effects of CRISPR gene-editing. The CERES scores for all cell lines in
this study are available at https://depmap.org. Unless noted, figures
represent data reported in the 20Q4v2 release and exhibit very high
degree of concordance with results from other releases (for example,
inExtended Data Fig.1). Essentiality was also evaluated by converting
the CERES scores into ranks of CERES scores (alsoreferred to as ‘CERES
ranks’) for each gene within each cell line; or the MAGeCK algorithm* to
assess SgRNA depletion or enrichment without correction for DNA copy
number. Dependency data based on RNA interference were derived
from Achilles Heel sShRNA screens and Novartis’ Project DRIVE®®, and
were reprocessed using the DEMETER?2 algorithm to calculate gene
dependencies®.

Computational methods to identify preferential
dependencies

To identify candidate tumor type-preferential dependencies, we
examined genes with significant difference and lower (more essen-
tial) average CERES scores in MM versus non-MM cell lines; in similar
comparisons of a different tumor type versus all others; or compar-
ing MM lines versus, for example, solid tumors. Statistical signifi-
cance was assessed using empirical Bayes moderated ¢-statistics using
Limma software with an adjusted P value of <0.05 and a difference in
CERES score of <-0.2 between cell types was considered significant.
Toidentify arefined list of candidate MM-preferential dependencies,
we focused on genes that satisfied the following criteria: (1) adjusted
Pvalue (FDR) <0.05 in Limma tests comparing CERES scores in MM
versus non-MM cell lines; (2) average CERES score difference of <-0.2
between MM versus non-MM cell lines; (3) average CERES scores
of <-0.2 in MM cell lines; (4) at least 15% MM cell lines with CERES
score <-0.4; (5) the fraction of non-MM cell lines with <-0.4 CERES
score is <0.8 (to filter out broadly essential/‘core essential’ genes);
(6) adjusted P value (FDR) <0.05 in Fisher’s test comparing ranks of
CERES scoresin MM versus non-MM cell lines; (7) log,(TPM +1) of 1.0
in at least 30% of MM cell lines tested (TPM: transcripts per million).
For genes in the X chromosome, CERES-based correction for their
copy number status was notapplied in early versions of DepMap data.
Such genes are indicated in gray for the respective DepMap releases
(Extended Data Fig. 1a). We also compared MM versus non-MM cell
lines, using the same statistical tests as for CERES ranks, in terms of
thedistribution of DNA copy number-uncorrected ranks based onthe
MAGeCK algorithm® of sgRNA depletion.

Molecular profiling and other datasets

Transcriptional profiles, DNA copy number status and mutational land-
scapes of human MM and non-MM cell lines examined were accessed
from the CCLE portal (https://portals.broadinstitute.org/ccle/data,
dataversions from2017-2018) or the Dependency Map portal (https://
depmap.org/portal). Transcriptional profiles, mutationaland CNV data
onMM tumor cells from patients and clinical data on progression-free
survival (PFS) and overall survival (OS) of the CoMMpass study were
accessed from the MMRF Researcher Gateway (https://research.them-
mrf.org/, datareleases IA8-1A19): PFS and OS data were evaluated (for
example, Extended Data Fig. 4c—-e) for patients receiving bortezomib
plus immunomodulatory thalidomide derivative (IMID) (cBI group),
bortezomib without IMID (B group), IMID plus carfilzomib (cIC group)
and all patients (full set) of the datataset. Gene expression profiles on
patient tumors with non-MM malignancies (forexample, in Extended
DataFig.4aor Supplementary Figs.2-6) were derived from The Cancer
Genome Atlas (TCGA) and accessed from https://gdac.broadinstitute.
org/ (version2016012800), https://portal.gdc.cancer.gov/. TCGA and

MMRF CoMMpass datacanalso beretrieved from the UCSC Xena plat-
form®. For evaluation of gene expression, after alibrary size normali-
zation and voom transformation®, the Limma moderated t-test was
applied between samples of MM and TCGA (excluding acute myeloid
leukemia) to identify genes with FDR <0.05 and log,FC <-1.0 or above
>1.0. The patterns of transcript expression for MM-preferential depend-
encies were also examined in publicly available datasets of samples
representing different stages of MM or settings with distinct differ-
encesinthe clinical or biological behavior of MM (GSE2113, GSE5900,
GSE6477, GSE13591, GSE39754, GSE39925 and GSE66293) or patients
with MM receiving bortezomib-based or other treatments (GSE19748
and GSE9782) or MM cells interacting with BMSCs (GSE20540). IRF4
target genes were identified previously’ (in datasets GSE8958, GSE9067
and GSE9367), and genes downregulated by IKZF1 or IKZF3 LOF were
derived in prior studies (GSE113031) (ref. 19). ATAC-seq data of MM
lines (from GSE121912) were analyzed to determine accessible regions
of chromatin with MACS2 (v2.1.0.20151222) (refs. 63,64) using default
parameters and a g-value of 0.01. Regions that overlapped ENCODE
blacklisted regions were removed®. ATAC-seq data were normalized
for reads per peak million (RPPM) for visualization using the follow-
ing formula: RPPM = reads x (10%/total reads in autosomal peaks).
Super-accessible regions were determined using the GenomicRanges
(v1.36.1) and GenomicAlignments (v1.20.1) packagesinR (v3.6.3) where
regions within 12.5 kb were linked together excluding those within
2.5kbofatranscriptionstartsite. Regions were ranked by accessibility
(RPPM), and regions that were past the inflection point were consid-
ered super-accessible regions. Genome-wide chromatin immuno-
precipitation followed by sequencing analyses for POU2AF1 (OCA-B)
were accessed from GSE79480. Functional genomic data of retroviral
gene-trap mutagenesis screen and a gene-editing screen for genes
involved in ERAD regulation in KBM7 haploid cells were derived from
ref. 45. The GDSC1 and GDSC2 datasets of pharmacological screens
were derived from the Genomics of Drug Sensitivity Project (ref. 66
and https://www.cancerrxgene.org/). The direct (physical) and indi-
rect (functional) associations of the MM-preferential dependencies
(Extended DataFig.1d), based on computational prediction, knowledge
transfer between organisms, interactions aggregated from other (pri-
mary) databases or other resources integrated, were visualized using
the STRING database (String-DB, https://string-db.org/ v11.0) (ref. 67).

Cloning of individual sgRNAs

sgRNAs for CRISPR KO, CRISPR interference and CRISPR activation
were packaged in pLVX-hyg-sgRNA1, pXPR-502 (RRID: Addgene_96923)
and pXPR-050 (RRID: Addgene_96925) as described. Briefly, target
sgRNA oligos (Supplementary Table 2) were mixed with Guide-it Oligo
annealing buffer (Takara Bio 632630), denatured at 95 °C or 2 min
and cooled to 25 °C over 15 min. Annealed oligos were ligated into
gel-purified vectors using DNA Ligation Mighty Mix (Takara Bio USA,
6023) at 16 °C for ~30 min, transformed into Stellar Competent Cells
(Takara Bio USA), with resulting colonies picked, expanded with DNA
isolated using the QIAprep Spin Miniprep Kit (Qiagen, 27106), screened
forinserts and the resulting plasmids sequenced.

Addback studies

In-frame fusion of sequences encoding HA-FKBP127¢ in pLEX_305-
N-dTAG (Addgene, #91797) to the complementary DNA (cDNA) encod-
ing IRF4toyield HA-FKBP12"¢"-IRF4 cDNA was performed by Gateway
recombination (Invitrogen). Individual sgRNAs against intron-exon
junctions (IEJs) of IRF4 were designed using the Broad Institute
sgRNA design portal (https://portals.broadinstitute.org/gpp/public/
analysis-tools/sgrna-design). All sgRNA sequences were synthesized
by CustomArray and cloned into a pHKO9 vector (as described in
https://media.addgene.org/cms/filer_public/4f/ab/4fabc269-56e2-
4ba5-92bd-09dc89cle862/zhang lenticrisprv2_and_lentiguide_oligo_
cloning_protocol_1.pdf). Production of lentiviral particles for IRF4
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fusion constructs and individual sgRNAs, and lentiviral transduction
were performed on the basis of published protocols®®*’, The viability of
cell populations transduced with HA-FKBP12™¢"-IRF4, sgRNAs against
IEJs of IRF4 or both was assessed 3 days after hygromycin selection for
thelastof the transductions (for the sgRNAs against IEJs of IRF4) using
CellTiter-Glo (CTG, Promega).

Tumor cell viability assays

In vitro anti-MM activity for small-molecular-weight inhibitors.
CTG assays were performed for studies with pan-PIM inhibitors
LGB-321(AdooQ BioScience #A14420-5) or SGI-1776; the CBFB inhibi-
tor Ro5-3335 (Fisher Scientific #469410), the CARM1 inhibitor Merck
217531 (EMD Millipore #217531), the SYVN1 inhibitor LS-102 (Fisher
Scientific #NC1398267) and SIK inhibitor HG-9-91-01 (MedChemex-
press, HY-15776-5MG). Cell lines were seeded with inhibitor for 3-5 days
asindicated. CTG assays at indicated timepoints were measured by a
BioTek Synergy 2 plate reader (BioTek).

Assessment of cell viability after CRISPR gene editing, activa-
tion or interference. Lenti-X-293T cells were transduced using lipo-
fectamine with packaging plasmids psPAX2 (RRID: Addgene 12260)
(5 pg) and MD2.G (RRID:Addgene_12259) (2.5 pg) and plasmids encod-
ingindividual sgRNAs packaged inthe pXPR_502 or pLVX-hyg-sgRNA1
vectors (5 pg). Virus was collected after 24 hand1 mlapplied to1 x 10°
targetcells.

For CRISPR gene-editing studies, viability of KMS18 or OCI-My5
cells harboring Tet-inducible SpCas9 construct and transduced with
sgRNAs for genes of interest (details in Supplementary Table 3) were
seeded (100 cells per well) into 384-well plates, in 10% Tet-negative
fetal bovine serum (FBS) medium (50 pl) with or without Doxy
(2 ug ml™) and another 50 pl medium with or without Doxy (2 pg ml™)
wasadded at day 7. CTGreagent was added to each well at day 14, and
plates were read using a microplate reader. For CRISPR interference
studies, KMSI1 cells with Tet-inducible dCAS9_KRAB construct and
transduced with sgRNAs (details in Supplementary Table 3) were
seeded (0.3 x 10° cells per well) into 24-well plates, in10% Tet-negative
FBS medium 1 ml with or without Doxy (2 pg ml™), and seeded in
384-well plates. Mediawere changed every 3-4 days with cell viability
checked by CTG at day 11.

For CRISPR activation, LP1 dCAS9-VP64 cells were plated in 1 ml
of complete RPMI1640 medium per well in a 24-well plate. Cells were
incubated in cellmedium containing polybrene (4 pg ml™; Santa Cruz
Biotechnology) and 1% HEPES (1 M), and same amount of viral prep,
were centrifuged at 1,500g for 2 h and incubated overnight at 37 °C
5% CO,. Media were changed the next day and, after another 48 h,
selection with puromycin 2 pug ml™*for 7 days. After12and 19 days from
transduction, cells were detached from flask by trypsin and allowed to
recover at1 ml of complete medium. Then, 50 plaliquots were seeded
in384-well plate and were assessed using CTG.

Competition assay evaluated by INDEL analysis

Competition assays with gene-edited cells were performed as in pre-
vious studies’™. KMSI8 cells stably transduced with Doxy-inducible
SpCas9 were transduced with pLVX-hyg-sgRNA1 plasmid harboring
specific gRNAs (Supplementary Table 3) and selected in Hygromycin
B (350 pg ml™). OR12D2 KO cells and UBE2/1 KO cells were mixed at a
1:9 ratio and maintained with or without Doxy at 2 pg mi™ (replenished
every 3 or 4 days). Cells were collected at day 14 or 28. Genomic DNA
was extracted from cell pellets, and targeted lesion of sgRNA sequence
was amplified by PCR and analyzed by next-generation sequencing
(MGHDNA core; https://dnacore.mgh.harvard.edu/new-cgi-bin/site/
pages/crispr_sequencing_main.jsp). Indel analysis and estimation of
percentage of cells with frameshift mutations was performed with
CRISPRESSO (http://crispresso.pinellolab.org).

Immunoblotting

Similar to prior studies™, cells (3 x 10° per condition) were collected
and lysed using RIPA buffer (ThermoFisher) with protease/phosphatase
inhibitor cocktail (Cell Signaling Technology) by incubating onice for
10 min. Lysates were collected by centrifugation (15,000g for 10 min
at4 °C), and lysate concentration was determined using bicinchoninic
acid (BCA) assay (ThermoFisher). Protein samples were resuspended
inBolt LDS sample buffer (NuPage, Invitrogen) with sample-reducing
agent (NuPage), heated to 70 °C for 10 min and 10-20 pg per sample
loaded on4-12% Bis-Tris gels (NuPage) and runat125 Vfor 70 minusing
MOPS running buffers. Gels were transferred onto polyvinylidene
fluoride membranes using SDS-based transfer buffer (NuPage), blocked
in 5% skim milk in TBS-T for 1 h and probed with primary antibodies
overnightat4 °C.Secondary antibodies in 1% skim milk in TBS-T were
applied tothe membranes for1.5 hat room temperature before incuba-
tion in Enhanced Chemiluminescence (ECL) (ThermoFisher #34075)
substrate. Information on antibodies used in these studies is included
inSupplementary Table 2. Immunoblots were visualized using a C-DiGit
Blot Scanner (LI-COR Biotechnology).

RNA-seq

Triplicate cultures of LP1 cells transduced with sgRNAs for CRISPR
activation of POU2AFI or control genes were pelleted and frozen at
-80 °C. RNA was extracted by RNeasy Plus Mini Kit (Qiagen 74134),
and ERCC RNA Spike-In Mix (Thermo Fisher 4456740) was added at
the first step of extraction. RNA sequencing was performed by the
Molecular Biology Core Facilities (MBCF, DFCI). Results are available
(GSE186997). RNA-seq raw data processing and generation of gene
read counts was performed with STAR”.. Analysis performed with
edgeR Bioconductor package involved ERCC-based normalization, a
generalized linear model and, for the likelihood ratio test, pooling of
the coefficients of each sgRNA within the control or POU2AF1activation
groups. GSEA was performed using the preranked option (for example,
ranking accordingto -log,,FDR x log,FC) with custom sets represent-
ing genes suppressed by LOF of IRF4, IKZF1, IKZF3 (refs. 5,19) or genes
upregulated with MYC amplification (for example, Kim_MYC_Ampli-
fication_Targets_UP), using default settings (through Gene Pattern,
https://www.genepattern.org/).

Subgenome-scale CRISPR editing studies invitro andin vivo

A library of 1,372 oligonucleotides for sgRNAs was designed to
include typically 4 guides per gene for each of 184 genes, including 89
MM-preferential dependencies; broad-spectrum oncogenes; select
tumor suppressor genes (for example, PTEN); and genes with limited
invitroessentiality in MM cells, including some with significantly higher
expressionin MM versus non-MM lines, and 155 OR genes ‘DNA cutting’
control sgRNAs. These oligonucleotides were synthesized in pooled
format (CustomArray), PCR amplified and gel purified using a Qiagen
gel extraction kit and used as template for a second PCR reaction with
the flanking sequence to attach to the lentiGuide-Puro vector. After gel
purification, 0.1 pmol of PCR product, 90 ng of lentiGuide-Puro and
Gibson assembly kit with water were incubated for 30 minat 16 °C. Next,
1,200 ng of the resulting plasmid DNA was transformed into 300 pl of
ElectroMAX Stbl4 electrocompetent cells by electroporation and put
into 2.5 ml of SOC medium before being shaken1hat 37 °C. After incu-
bation, cells were plated in 3 ml of medium on a total of three bioassay
platesandincubatedfor16 hat37 °C. After 16 h of incubation, cells are
collected with30 mlof cold LB each by biospreader and pelleted at4 °C
at 6,000g for 15 min. Plasmid DNA was extracted using the QIAGEN
Plasmid Plus Maxi Kit. Lenti-X-293T cells were plated in T175 culture
flasks in Dulbecco’s modified Eagle medium with 10% FBS and incubated
overnight. The next day, cells were transduced using lipofectamine with
thelibrary plasmids (30 pg) and MD2.G encoding VSV-G (12.5 pg). Viral
supernatants were collected after 24 hand stored at —80 °C before use.

Nature Cancer | Volume 4 | May 2023 | 754-773

769


http://www.nature.com/natcancer
https://www.ncbi.nlm.nih.gov/nuccore/A14420
https://scicrunch.org/resolver/Addgene_12259/
https://dnacore.mgh.harvard.edu/new-cgi-bin/site/pages/crispr_sequencing_main.jsp
https://dnacore.mgh.harvard.edu/new-cgi-bin/site/pages/crispr_sequencing_main.jsp
http://crispresso.pinellolab.org
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE186997
https://www.genepattern.org/

Resource

https://doi.org/10.1038/s43018-023-00550-x

SpCas9-expressing cell lines (KMS11, XG-7, RPCI-WM and BCWM1)
wereincubated for 16 hin cellmedium containing 8 pg ml™ polybrene,
10 MM HEPES (pH 7.4) and viral prep (6 ml) diluted to achieve transfec-
tionrate of 0.3. After theend of theincubation with the viral preps, cells
were washed and incubated for an additional 2 days. Transduced cells
were treated with puromycin (2 pg ml™) for up to 7 days after 3 days
from transduction. The RPCI-WM and BCWMI cell lines transduced
with this focused sgRNA library were cultured (three replicates per
cellline) invitro for 3 weeks. At the end of this incubation, tumor cells
were collected, and PCR amplification and next-generation sequenc-
ing of the samples were performed*®>’°, to quantify the abundance of
sgRNAs. The KMS11 and XG7 cell lines transduced with this focused
sgRNA library were introduced in vivo into bicalcium phosphate par-
ticles: the latter had been loaded with human primary mesenchymal
BMSCs, cultured ex vivo under conditions favoring osteogenic differ-
entiation of these stromal cells** and implanted subcutaneously (two
scaffolds per mouse) into 8-week-old NSG female mice. Seven weeks
after scaffold implantation, 1.5 million KMS11-SpCas9 or XG-7-SpCas9
cellstransduced with the focused sgRNA library were injected directly
into the scaffolds (five mice for KMS11and eight for XG7 study). With-
out exceeding the maximal tumor burden (20 mm of diameter inany
direction) permitted by DFCIIACUC, tumors were removed, and pro-
cessed for DNAisolation (Blood & Cell Culture DNA Maxi Kit #13362),
pooling of material from the same mouse, PCR amplification and
next-generation sequencing®>’°, to quantify the abundance sgRNAs
forgenes ofinterest (versus sgRNAs for control OR genes). Read counts
normalized according to the OR control sgRNAs were analyzed, with
averaging of read counts examined both before (for example, Fig. 8a)
and after (for example, Fig. 8b,c) log, transformation, yielding con-
cordant conclusions regarding the patterns of depletion for sgRNAs
targeting MM-preferential dependencies.

Statistics and reproducibility

To identify and further characterize genes preferentially essential
for MM, this study involved multiple essentiality metrics and cri-
teria for the identification of these genes; corroboration of results
across multiple iterations of genome-scale screens; functional char-
acterization of many of these genes; integration of their molecular
features across multiple datasets; and alternative methods of analy-
ses of data (information on additional approaches for data analyses
not included in this study are available through the corresponding
author). Details on sample size(s) and statistical test(s) are provided
intherespective sections. Statistical tests were two-sided (except rank
aggregation analyses), and distribution of individual data points was
assumed to be normal, but this was not formally tested. No statistical
methods were used to predetermine sample sizes, but in this study
these sample sizes (for example, numbers of replicates in CRISPR
experiments) were similar to those reported in prior publications®.
Animal studies were performed according to a protocol approved
by the DFCI IACUC and did not involve treatment administration;
thus, randomization was not pertinent. For other experiments, data
collection and analysis were not performed in a manner blinded to
the conditions of the experiment. Further information on research
designisavailable in the Nature Research Reporting Summary linked to
this article.

Resource availability

Requests for resources and reagents should be directed to the Lead
Contact, Constantine S. Mitsiades (Constantine_Mitsiades@dfci.
harvard.edu).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

RNA-seq data that support the findings of this study are publicly avail-
able in the Gene Expression Omnibus (GEO) under accession code
GSE186997. Previously published data that were reanalyzed here
are available under accession codes GSE2113, GSE5900, GSE6477,
GSE13591, GSE39754, GSE39925, GSE66293, GSE20540, GSE8958,
GSE9067, GSE9367, GSE19748, GSE9782, GSE113031, GSE121912 and
GSE79480.Molecular profiling datawere derived for CCLE lines from
the CCLE portal (https://portals.broadinstitute.org/ccle/data) or the
Dependency Map portal (https://depmap.org/portal), for MM patient
samples from MMRF Researcher Gateway (https://research.themmrf.
org/) and for non-MM patient samples from the TCGA Research Net-
work (https://portal.gdc.cancer.gov/, http://cancergenome.nih.gov/).
Source dataare provided with this paper. All other datasupporting the
findings of this study are available from the corresponding author on
reasonable request.

Code availability

Theanalyses of our study involved standard workflows and sequential
use of available code, for example, through R packages from CRAN
(https://cran.r-project.org/) and Bioconductor (https://www.biocon-
ductor.org) and Rbuild-in functions for graphing, statistical tests and
data analyses, for example, moderated ¢-test with the limma Biocon-
ductor R package, Fisher’s exact test with the fisher.test R build-in
function, survival analysis log-rank test the survival CRAN R package
and gene expression analysis with edgeR Bioconductor R package. For
processinglarge data matrices we used the data.table CRANR package.
For data visualization, for example, generation of heat maps with the
ComplexHeatmap Bioconductor R Package, the circos plot with circlize
Bioconductor R package and for dimensionality reduction visualiza-
tion the tsne CRAN R package. We further used for data analysis and
visualization the statistical and graphing software GraphPad Prism 9,
heat maps with Morpheus (https://software.broadinstitute.org/mor-
pheus/) and network analysis with StringDB (https://string-db.org/).
RNA-seqraw data processing and generation of gene read counts were
performed with STAR".
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Extended Data Fig. 1| MM-preferential dependencies in genome-scale
CRISPR-based gene-editing screens. a, Summary matrix of results for
identification of MM-preferential dependencies in genome-scale CRISPR-
based gene-editing screens from different releases of the Dependency Map
program. The criteria used to identify MM preferential dependencies in the
20Q4v2 Dependency Map data were also appliedin earlier releases (18Q3 to
20Q3). The matrix summarizes results for all genes that met these criteria in at
least one of the releases. Black or white indicate, respectively, that a gene did
vs.did not meet criteria for MM preferential dependency in the respective data
release (gray signifies that CERES scores were not calculated for a given gene
inthe datarelease). b, MM-preferential dependencies clustered according
tomolecular pathways represented in this group of genes. Color-coded
heatmaps for CERES scores following the format of Fig. 1a. Genes are clustered

based on their related functional groups, pathways, or biological functions,
based on aggregate information from the literature. c-d, Molecular pathways
enriched for MM-preferential dependencies. ¢, Schematic representation of
functional groups represented in the MM-preferential dependencies, such as
transcription factors/co-factors, other regulators of transcriptional responses
and chromatic signaling; kinases serving as upstream regulators of these
pathways (for example, kinases activating NF-kB); or endoplasmic reticulum/
Golgiregulators. d, Visualization of the direct (physical) and indirect (functional)
associations of the MM-preferential dependencies, based on computational
prediction, knowledge transfer between organisms, interactions aggregated
from other (primary) databases or other resources integrated and visualized by
the online STRING database (https://string-db.org/, v11.0)*".
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Extended Data Fig. 2| Additional metrics of essentiality for MM preferential
dependencies. a-b, Ranks of CERES scores or DNA copy number-uncorrected
ranks of sgRNA depletion for MM-preferential dependencies. Essentiality
metrics are depicted in color-coded heatmaps similar in format to Fig. 1a, with
results presented for MM lines as a matrix (each line in a separate column)

while results for non-MM lines are stacked separately for each gene from lowest
to highest essentiality (from left to right in each row). For each cell line, the

top 3000 genes with the lowest CERES scores (in a) or with most pronounced
sgRNA depletion based on MAGeCK rank aggregation (inb) are depicted in
green or purple, respectively. For each cell line, the top 100 genes with highest
CERES scores (in a) or highest MAGeCK ranks for sgRNA enrichment (inb) are

depicted in purple and yellow/orange, respectively, according to the respective
color-coded scales. c-d, Patterns of depletion for shRNAs targeting genes
defined by CRISPR as MM-preferential dependencies.c, DEMETER2 scores are
depicted as amatrix for MM (n =13 cell lines; right) and as separate stacked plots
for non-MM (n = 461 cell lines; left), according to the color-coded scale (black/
blue for shRNA depletion; yellow/orange/brown for shRNA enrichment; white for
DEMETER2 scores between -0.4 and +0.4; and gray for genes not examined in the
shRNA screen of the respective cell line). d, DEMETER2 scores for key examples of
MM-preferential dependencies are depicted (in rows) for both non-MM (left) and
MM lines (right) as stacked bar graphs, according to the color-coded scale.
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Extended Data Fig. 3| Patterns of expression of MM-preferential by maximum value resulting in a value range between 0 and 1 and presented as
dependencies in MM vs non-MM cell lines. RNA-Seq data (CCLE dataset) for stacked bar plots. Color bars on the side of the graph denote different clusters of
MM-preferential dependenciesin MM vs. non-MM cell lines. Transcript levels genes, defined based on analyses of Fig. 3 (based on 2-sided limma t-test FDR and
(log,(TPM +1)) for each gene (row) across MM and non-MM cell lines are scaled log,FC of differential expression of each gene in MM vs non-MM lines).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Patterns of transcript levels for MM-preferential
dependencies in different biological or clinical contexts. a, RNA-Seq data
for MM-preferential dependencies in patient-derived tumor samples for
MM vs. non-MM. Transcript levels (presented as stacked plots) for each gene
(row) across MM (n = 591 samples; MMRF CoMMpass study, IA8 release) and
non-MM (n =11060 samples, TCGA; accessed from GDAC). Raw counts were
voomnormalized, negative voom values were set to zero, scaled by maximum
value for each gene, resulting in a value range between 0 and 1. Concordant
observations also obtained with other versions of MMRF and TCGA datasets.

b, Comparative analyses of transcript levels for MM-preferential
dependencies in different stages of myelomagenesis or settings with
distinct differences in clinical or biological aggressiveness of MM. Heatmap
summarizes results from comparisons performed between groups of samples
within each of the gene expression profiling datasets indicated in the figure. Red
and blue denote statistically significant (FDR < 0.05, Limma t-test, log,FC > 1.0
or <-1.0) up- or down-regulation, respectively, for ageneinagiven group of
samples vs. its indicated comparator group. Genes in gray do not have perfect
match probesin the respective array. White indicates no statistically significant

difference for a given comparison. Number of samples per group is indicated
next to each comparison. c-e, Transcript levels of most MM-preferential
dependencies do not consistently correlate with adverse clinical outcome.
¢, Overall survival (OS) or progression free survival (PFS) were examined for
MM patients at high vs. intermediate vs. low tertiles of expression of each MM-
preferential dependency in each dataset indicated in the graph (see Methods).
Red and blue denote statistically significant (at FDR < 0.05, two-sided log-rank
test) correlation of transcript levels for a given gene with adverse or favorable,
respectively, clinical outcome (white indicates FDR > 0.05). d-e, Cumulative
plots summarizing results of ¢, in terms of OS (d), or PFS (e), between MM
patients with high vs. intermediate vs. low tertile of expression of each gene in
each datasetindicated in the graph. For each potential FDR value (x-axis), the
y-axis depicts, separately for OS or PFS in each dataset, the cumulative fraction
of MM-preferential dependencies exhibiting FDR levels equal or lower to those
depicted in each respective position of the x-axis. For all evaluated datasets,
<25% of MM-preferential dependencies exhibit FDR < 0.05 for the correlation of
transcript levels with PFS or OS. Number of patient samplesin c-e is indicated for
each dataset.
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Extended Data Fig. 5| Genomic landscape of MM-preferentially essential
genes. a, Mutational and DNA copy number data for MM-preferential
dependenciesin MM vs. non-MM cell lines is included in heatmaps of CERES
scores (similar to the format of Fig. 1a). Green stars represent non-synonymous
mutations; while CNV gains and losses are depicted by ‘+’ or -, respectively.
Instacked plots for non-MM cell lines, green stars are also stacked and are not
linked with the CERES scores in respective lines. b, Rank of genes with most
frequent CNV gains in MM patient tumor samples (N = 932 samples; N =18,057
genes with CERES data (20Q4v2) and CNV datain CoMMpass study, IA15
release): MM-preferential dependencies are highlighted in red and their gene

symbols are labeled for those MM-preferential dependencies ranked in the top
200 genes (genes are ranked on the x-axis on alog, scale). ¢, Top hotspots for
gain of structural variants (SVs) ranked based on their frequency in MM patient
tumor samples (CoMMpass study), derived from analyses of Rustad et al.”.
MM-preferential dependencies residing in 8 of these hotspots are highlighted,
and thosein bold have not been previously proposed as candidate drivers of the
respective hotspots. Gray denotes hotspots which contain no genes evaluated
inthe genome-scale CRISPR screens. d, Heat maps for CERES scores in MM vs.
non-MM lines of genes in each of the 8 SV gain hotspots of panel ¢ that contain
MM-preferential dependencies.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Overlap or proximity of chromatin accessible regions
with MM-preferential dependencies. a, Plot of stitched regions of chromatin
accessibility with average ATAC-seq signal (RPPM) across 22 MM cell lines shown
ingray. Black lines denote the inflection point that denotes super-accessible (SA)
regions. Regions within 100 kb of MM-preferential dependencies are denoted

by red tick marks on the bottom and the odds ratio (OR) and P-value (two-sided
Fisher’s exact test) of enrichment of MM-preferential dependencies found near
super-accessible regions are shown. b, Heatmap of chromatin accessible regions
within 100 kb of MM-preferential dependencies across 22 MM cell lines. c-f,
Genomic plots of ATAC-seq for select examples of MM-dependencies (PRDM1I,

IRF4, POU2AF1, UBE2J1) that overlap with super-accessible (SA) regions. Each cell
lineis shownin a transparent gray and the average is shown in black. Note the
proximity of IRF4 and DUSP22 and the multiple prominent areas of accessible
chromatin withinintronic regions of DUSP22. g, Hierarchical clustering of MM
celllines based on their CERES scores for MM preferential dependencies. MM
celllines are annotated for their status for genomic events, such as translocations
targeting CCND1, CCND2, CCND3, MAF, MAFB, MMSET/NSD2, mutations for KRAS
or NRAS, loss-of-function for TP53; or the functional status of their dependence
(based in CRISPR data) on either MAF or MAFB.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| Comparative analysis of CERES scores for MM
preferential dependencies in MM vs other hematologic malignancies vs.
solid tumors. Results are presented ina manner similar to Fig. 1, with stacked
bar plots for solid tumors (left); separate matrices for cell lines from non-MM
hematologic malignancies (middle) vs. MM (right). Genes are included in 7
different clusters determined based on the criteriaincluded in the color-coded
bars on the right-hand side of the graph (FDR of comparison of CERES scores

and difference in average CERES scores in MM vs. non-MM hematologic cell
lines; Fisher’s test FDR for comparison of CERES ranks; absolute differencein %
of MM vs. non-MM hematologic cell lines with CERES scores < -0.4; and % of MM
lines with CERES score < -0.4). Results highlight that several MM-preferential
dependencies are shared between MM and other hematologic malignancies, but
many others are preferentially essential only for MM cell lines, a statement also
supported by results of Extended Data Fig. 8.
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Extended Data Fig. 8 | See next page for caption.

Nature Cancer


http://www.nature.com/natcancer

Resource

https://doi.org/10.1038/s43018-023-00550-x

Extended Data Fig. 8| MM-preferential dependencies with distinct vs.
overlappingrolesin MM vs. other hematologic neoplasias or solid tumors.
a, Heat map for MM-preferential dependencies, summarizing their potential
roles as preferential dependencies for other malignancies. Color coding
indicates the difference in average CERES score for each gene in agiven tumor
typevs. all others: black/blue or red/orange denote FDR < 0.05 and lower or
higher, respectively, average CERES scores for a given gene in the respective
neoplasia vs. all other cancer types. White denotes FDR > 0.05. b-c, t-SNE plots
of cell lines (depicted as dots), from MM, leukemias, lymphomas or other
neoplasias, clustered according to RNA-Seq profiles b, or CERES scores ¢, for
MM-preferential dependencies. RPKM data in b from CCLE [2018] for lines
with matching 20Q4v2 CERES scores (N =15,33,16, 505 lines, respectively).
Inc,N=19,44,20,706 lines, respectively (20Q4v2).d, Numbers of CRISPR-
defined preferential dependencies (y-axis; identified based on the same criteria
applied for MM) vs. number of lines for each indicated tumor type (x-axis). e,
Volcano plot of -log;,FDR (Limma t-test) for comparison of CERES scores in MM
vs non-MM hematopoietic cell lines (y-axis) vs. difference in average CERES

scores in MM vs. non-MM cell hematopoietic lines (x-axis). MM-preferential
dependencies (identified in this study by comparison of MM vs. all non-MM cell
lines) are depicted inred and orange, respectively, if they did vs. did not exhibit
significantly lower CERES scores in MM compared with non-MM hematopoietic
lines. f-h, Dependencies with differential role in MM vs. solid tumors or vs. B-cell
lymphomas. Volcano plots for comparisons of CERES scores in MM lines (N =19)
vs. £, allnon-MM cell lines, from both hematologic malignancies and solid tumors
(N =768; also see Supplementary Table1); g, only solid tumor cell lines (N = 701);
h, Bcelllymphomallines (N =13) (x-axis: difference in average CERES scores
between respective groups; y-axis: -log;,FDR, Limma t-test). Red dots in each
plotindicate genes satisfying criteria for more pronounced essentiality in MM
compared with the respective groups of cell lines; i, Venn diagram highlighting
genes with differential role in MM vs. solid tumors or B-cell ymphomas, based on
panels f-h. j, CERES scores for genes that do not meet criteria for MM-preferential
dependencies (comparison of MM vs. all other non-MM lines), but are more
essential in MM vs. solid tumors or B-cell lymphomas, based on panels f-h.
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CERES <-0.4in >90% of cell lines across cancers); (ii) meet all criteria for MM-
preferential dependencies vs. other genes that have CERES scores < -0.4 in (iii)
>50% of MM cell lines tested, (iv) 30-50% of MM cell lines tested; (v) <30% of MM
celllines tested; or (vi) none of the MM cell lines tested.
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Extended Data Fig.10 | Molecular and functional studies of POU2AF1and
ER-associated dependencies. a-b, Immunoblotting analyses to confirm

that protein levels of POU2AF1 are decreased with Doxy-inducible CRISPR
interference (a, KMS11 cells) and increased with CRISPR activation (b, LP-1cells)
compared to cells with sgRNAs for control OR genes. Beta-actina, or vinculinb,
were probed as loading controls in the same respective membrane concurrently
with POU2AF1. ¢, Relative numbers of viable LP-1 cells with CRISPR-based
activation of POU2AF1 vs. a control OR gene (day 12 after end of transduction
with sgRNAs for POU2AFI; results qualitatively concordant with those at later
time-pointin Fig. 6b). CTG assay, mean +/-s.e.m.results; n = 6 independent
replicate cell cultures per condition; one-way ANOVA and Tukey’s post-hoc test
(detailed results included in Source Data), p < 0.001 for each POU2AF1 sgRNA vs.
OR12D2sgRNA).d, Immunoblotting for UBE2J1 after doxy-inducible CRISPR-
based KO of UBE2JI (or a control OR gene). Vinculin was probed as loading
control concurrently with the staining for UBE2J1. Each experiment ina-d was
performed once. e, UBE2/], its dislocon complex partners SELIL, SYVNI, and

other ER-related MM preferential dependencies are among the top ‘hits’ in two
genome-scale screens (using retroviral gene-trap mutagenesis and CRISPR gene-
editing)® for genes involved in ERAD regulation (in KBM7 haploid cells). f, In vitro
bortezomib treatment (24 h) of KMS18 cells with Doxy-inducible CRISPR KO of
SYVNI or control OR genes. (CTG; mean +/-s.e.m.; n = 8independent replicate
cell cultures for drug-free control and n =4 independent replicate cell cultures
per drug dose for each KO; 2-way ANOVA (p < 0.001); detailed results of Tukey
post-hoc tests included in Source Data). g-h, Patterns of CERES scoresin MM
(n=19) and non-MM (n = 770) lines for g, ER/ERAD/Golgi-related genes and h,
select ER genes. Results are presented similar to format of Fig. 1. Highlighted gene
symbols include MM-preferential dependencies (red); examples of core essential
genes (green); and genes which do not meet all criteria for MM-preferential
dependencies but are recurrently essential for MM cell lines and are linked with
the function of the ER glycoprotein quality control system (blue) and the ER
translocon system (purple).
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Data collection  Previously existing R packages

Data analysis MAGeCK https://sourceforge.net/projects/mageck/
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cBioPortal for Cancer Genomics cBioPortal for Cancer Genomics https://www.cbioportal.org/
CoMMpass study Multiple Myeloma Research Foundation [MMRF] https://research.themmrf.org/rp/
Biorender http://www.biorender.com
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Moprheus (https://software.broadinstitute.org/morpheus/)
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

CERES scores for multiple myeloma (MM) and non-MM cell lines have been publicly released as part of the Cancer Dependency Map portal (depmap.org/portal).
Additional information about these screens that may not be readily available through the portal, can be made available by the corresponding authors upon request.
DEMETER2 scores from shRNA screens are also available through the Cancer Dependency Map portal. Most analyses presented in this study in terms of genome-
scale CRISPR screens involved the data currently in the 20Q4v2 release of DepMap. Extensive analyses were also performed with other releases of DepMap, both
earlier and subsequent, and yielded concordant observations. This is reflected in some presented in the manuscript (e.g., with 20Q4 or earlier releases) and
additional ones that are available upon request from the corresponding authors. Random resampling analyses or repeat analyses removing individual cell lines from
the datasets were also performed, supporting the results of the analyses presented in this study. Identification of MM preferential dependencies from the 20Q4v2
DepMap release is presented here without two non-MM lines (ACH.001173, ACH.001790) with incomplete annotation at the time of analysis, but additional
evaluation of the entire 20Q4v2 cohort as well as others led to concordant identification of MM-preferential dependencies. Transcriptional profiles, DNA copy
number status and mutational landscapes of human MM and non-MM cell lines used in this study have been previously published and were initially accessed from
the Cancer Cell Line Encyclopedia (CCLE) portal (https://portals.broadinstitute.org/ccle/data) and subsequently through the Dependency Map portal (depmap.org/
portal). Transcriptional profiles and mutational data on MM tumor cells derived from patients, as well as clinical data on progression-free and overall survival from
the (MMRF CoMMpass study, of various versions including MMRF IA8, 1A15, IA17, and IA19) were accessed from the MMRF Researcher Gateway (https://
research.themmrf.org/). Data on the mutational landscape for MM-preferential essential genes in samples derived from an additional cohort of newly diagnosed
MM patients was also accessed from cBioPortal for Cancer Genomics (http://www.cbioportal.org/). Gene expression profiles on patients with non-MM neoplasias
were derived from The Cancer Genome Atlas (TCGA) and accessed initially from https://gdac.broadinstitute.org/ and also from https://portal.gdc.cancer.gov/ or the
UCSC Xena platform. GEO datasets examined in our study included GSE2113, GSE5900, GSE6477, GSE13591, GSE39754, GSE39925, GSE66293, GSE20540, GSE&95S,
GSE9367, GSE19748, GSE9782, GSE113031, GSE121912 and GSE79480. The GDSC1 and GDSC2 datasets of pharmacological screens were derived from the
Genomics of Drug Sensitivity Project (https://www.cancerrxgene.org/). Additional data from pharmacological screens of the CTRP v2 study (Cancer Therapeutics
Response Portal [CTRP]) were derived from https://portals.broadinstitute.org/ctrp/.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Not applicable. The current study did not involve enroliment of human research participants.

Population characteristics Not applicable. The current study did not involve enrollment of human research participants.
Recruitment Not applicable. The current study did not involve enrollment of human research participants.
Ethics oversight Not applicable. The current study did not involve enrollment of human research participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Experiments were performed in biological replicates; their specific numbers, which depend on the nature of each experiment, are indicated in
the respective sections of the study. No statistical methods were used to predetermine sample sizes, but the sample sizes reflected prior
experience about typical number of replicates in similar experiments in other studies, for instance that triplicates per condition are typically
sufficient for CRISPR studies.

Data exclusions  The cell lines HUNS1 and KE97 are often described in the literature as MM cell lines, but in this study they were excluded from this group
because other reports in the literature and data from our groups indicate that these are lymphoblastoid cell lines. Identification of MM
preferential dependencies from the 20Q4v2 DepMap release is presented here without two non-MM lines (ACH.001173, ACH.001790) which
had incomplete annotation at the time of our analyses, but additional evaluation of the entire 20Q4v2 cohort as well as others led to
concordant identification of MM-preferential dependencies as the primary outcomes reported here.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
A

Lc0c Y21o




Replication Attempts to repeat in its entirety the large set of genome-scale CRISPR gene editing screens in both MM and non-MM cell lines have not been
performed. To identify and further characterize genes preferentially essential for MM, this study involved multiple essentiality metrics and
criteria for the identification of these genes; corroboration of results across multiple iterations of genome-scale screens and various different
releases of publicly available molecular profiling datasets; functional characterization of many of these genes; integration of their molecular
features across multiple datasets; and alternative methods of analyses of data (information on additional approaches for data analyses not
presented in this study can be available through the corresponding authors)

Randomization  N/A for this study. For instance, we did not perform in vivo studies involving treatment, therefore randomization was not pertinent.

Blinding N/A for this study. Data collection and analysis were not performed in a manner blinded to the conditions of the experiment

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

a | Involved in the study n/a | Involved in the study

|Z Antibodies |:| ChiIP-seq

Eukaryotic cell lines |Z |:| Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging

n

~

g Animals and other organisms
|:| Clinical data

|:| Dual use research of concern

XX X[

Antibodies

Antibodies used Mouse Monoclonal anti-human POU2AF1, Origene Technology, UM800111 (1:200 dilution)
Rabbit mAb antibody against human BiP (C50B12), Cell Signaling Technology Cat# 3177, RID:AB_2119845 (1:1000 dilution)
mouse monoclonal anti-human UBE2J1 HRP conjugated, Santa Cruz Biotechnology, SC-377002 HRP (1:100 dilution)
Rabbit monoclonal anti-GAPDH (14C10) HRP conjugated, Cell Signaling Technology, Cat# 3683, RRID:AB_1642205 (1:2000 dilution)
Rabbit monoclonal anti-human Vinculin (E1E9V) (HRP Conjugated) Cell Signaling Technology Cat# 18799, RRID:AB_2714181 (1:5000
dilution)
Rabbit mAb beta-Actin (13E5) (HRP Conjugate), Cell Signaling Technology, Cat# 5125S, RRID: AB_1903890 (1:2000 dilution)
Anti-mouse IgG, HRP-linked Antibody, Cell Signaling Technology, Cat#7076, RRID:AB_330924 (1:2000 dilution)
Anti-rabbit 1gG, HRP-linked Antibody, Cell Signaling Technology, Cat# 7074, RRID:AB_2099233 (1:2000 dilution)

Validation Information on validation of these antibodies is included in the manufacturers' websites

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) SpCas9-expressing MM and non-MM cell lines for the genome-scale CRISPR gene editing studies were established by the
Broad Institute. Other cell lines used in this project in Cas9-negative format included MM1.S (ATCC, Cat# CRL-2974),
RPMI-8226 (DSMZ Cat# ACC-538), OPM-2 (DSMZ, Cat# ACC-50), JJN3 (DSMZ, Cat# ACC-541), L363 (DSMZ, Cat# ACC-49), LP1
(DSMZ, Cat# ACC-41), KMS-11 (JCRB, Cat# ICRB1179), XG7 (provided by the Boise Lab), KMS-27 (JCRB, Cat# JCRB1188).
Additional cell lines included MM.1S-SpCas9 (B. Ebert lab), KMS11 doxycycline-inducible dCas9-KRAB (generated by the
Mitsiades Lab), LP1 dCas9-VP64 and XG7-SpCas9 (generated in the Mitsiades Lab), RPCI-WM and BCWM1 (provided by the
Treon Lab, DFCI), KMS18, OPM2 and OCI-My5 cells with doxycycline-inducible SpCas9 expression (provided by Boise Lab),
KMS11-SpCas9 (Broad Institute) and Lenti-X-293T (Takara Bio, Cat# 632180)

Authentication STR profiling
Mycoplasma contamination All cell lines tested negative for mycoplasma

Commonly misidentified lines  HUNS1 and KE97 are often described in the literature as MM cell lines, but in this study they were excluded from this group
(See ICLAC register) because other reports in the literature and data from our groups indicate that these are lymphoblastoid cell lines
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

8 week old female NOD.Cg-Prkdcscid I12rgtm1Wijl/SzJ (NSG). Housing conditions for the mice, including dark/light cycle, ambient
temperature and humidity are controlled by the DFCI Animal Research Facility. The maximal tumor size allowable by our institutional
animal care and use committee protocol is 20 mm in any dimension. This maximum was not exceeded during the in vivo studies
Study did not involve wild animals

Sex-based studies were not specifically performed as part of this manuscript

Study did not involve samples collected from the field

Animal studies were performed according to a protocol approved by the Dana-Farber Cancer Institute Animal Care and Use
Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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