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In recent years, Bruton tyrosine kinase (BTK) inhibitors have provided significant advances in the treatment of patients with B-cell
malignancies. Ibrutinib was the first BTK inhibitor to be approved, and it changed the standard-of-care treatment for diseases such
as chronic lymphocytic leukemia, mantle cell lymphoma, marginal zone lymphoma, and Waldenström macroglobulinemia,
improving efficacy outcomes and safety compared to chemotherapy. In this article, we review the development of zanubrutinib, a
next-generation BTK inhibitor, from molecular design to patient-related outcomes. We start this journey by providing insights into
the discovery of BTK and the physiologic, genetic, and molecular characterization of patients lacking this kinase, together with the
brief treatment landscape in the era of chemo-immunotherapies. Zanubrutinib was originally developed by applying a structure-
activity strategy to enhance the specificity as well as enzymatic and pharmacokinetic properties. Preclinical studies confirmed
greater specificity and better bioavailability of zanubrutinib compared with that of ibrutinib, which supported the initiation of
clinical trials in humans. Preliminary clinical results indicated activity in B-cell malignancies together with an improved safety profile,
in line with less off-target effects described in the preclinical studies. The clinical program of zanubrutinib has since expanded
significantly, with ongoing studies in a wide range of hemato-oncological diseases and in combination with many other therapies.
Zanubrutinib currently is approved for various B-cell malignancies in multiple countries. This story highlights the importance of
multidisciplinary collaborative research, from bench to bedside, and provides an example of how the commitment to finding
improved treatment options should always run parallel to patient care.
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INTRODUCTION
B-cell malignancies are the most frequent hematologic cancers
and include a heterogeneous group of more than 40 malignancies
caused by the uncontrolled proliferation of B-cells [1]. Not only are
they the hematologic cancer most frequently diagnosed globally,
with 544,000 cases of non-Hodgkin lymphoma in 2020, but they
are also associated with considerable morbidity, with 260,000
deaths reported worldwide in 2020 [2].
Diagnostic tools to identify and classify B-cell malignancies have

improved the cytologic, molecular, and genetic understanding of
each specific disease, thereby also permitting the development of
improved therapies for each individual malignancy. In the past
few decades, therapies for B-cell malignancies have evolved
considerably. A brief overview of chronic lymphocytic leukemia
(CLL) is illustrative. Until the 1980s, cytotoxic agents, including
chlorambucil and cyclophosphamide, were the only available
therapeutic options. The development of the purine nucleoside
analogue fludarabine in the 1990s and its use in various
combinations helped enhance treatment outcomes (Fig. 1).
Despite improvements in response, duration of remission, and
progression-free survival (PFS), increases in overall survival (OS)
were limited [3]. Furthermore, chemotherapy was associated with
hematologic toxicity, secondary cancers such as myelodysplastic
syndromes and acute myeloid leukemia, and other adverse
effects [4, 5].

Better understanding of the cellular receptor pathways involved
in malignant B-cells led to development of monoclonal antibodies
targeting key surface antigens and receptors involved in the
survival and proliferation of malignant cells, such as the anti-
cluster of differentiation 20 (CD20) antibody rituximab [6].
Rituximab combined with fludarabine and cyclophosphamide
(FCR) notably improved survival [7, 8], but this combination
primarily was used in fit patients because it was too toxic (i.e.,
hematologic toxicity, risk of infections) for frail and/or older
patients [9]. Rituximab in combination with bendamustine (BR),
although not as effective as FCR in younger patients [10], is
associated with fewer and less severe toxic effects and, thus,
became the preferred regimen in frailer patients [9]. Improve-
ments in allogeneic stem cell transplantation offered a potentially
curative option, but only for young patients [5, 11].
Interestingly, in recent years, the number of allogeneic stem cell

transplantations performed in patients with CLL has decreased
considerably. The development and the use of targeted therapies,
including Bruton tyrosine kinase (BTK) inhibitors, may have
contributed to this reduction (Fig. 2) [12].

THE DISCOVERY OF BRUTON TYROSINE KINASE
The history of BTK started with the first diagnosis and description
of a disease presenting with absence of mature B-cells and
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immunoglobulin G, and characterized by recurrent bacterial
infections; this was X-linked agammaglobulinemia (XLA) described
by Dr Ogden Bruton and named eponymously after him [13].
Subsequent genetic characterization of XLA revealed that it was
caused by the lack of expression of BTK, a tyrosine kinase of the
Tec-family, due to mutations in a gene located on the X
chromosome [14, 15]. BTK is essential for maturation of pre–B
cells and other processes related to B-cell physiology, as shown by
characterization of Btk-null mice [16] and by the study of more
than 800 mutations in the BTK gene in patients with XLA [17].
Extensive molecular and cellular analyses have confirmed the
critical role of BTK in multiple hematopoietic signals, which go
beyond the B-cell antigen receptor pathway, and initial inhibitory
agents showed preliminary activity as antileukemic agents, setting
up BTK as a potential target in B-cell malignancies [18].

Rationale for and development of ibrutinib, the first-
generation Bruton tyrosine kinase inhibitor
Further understanding of the oncogenic dependencies of B-cell
malignancies expanded the potential therapeutic targets. This
opened the possibility of obtaining durable disease control with
more narrowly targeted therapies, with an improved safety profile,
enabling broader application to more patient subgroups [19].
Several newer therapeutic targets—such as CD37, spleen-
associated tyrosine kinase (Syk), phosphoinositide 3-kinase
(PI3Kδ), CD19, myeloid cell leukemia 1 (MCL1), and B-cell
lymphoma 2 (BCL-2) [11], receptor tyrosine kinase-like orphan
receptor 1 (ROR1)—have been studied in lymphoid cancers;
however, targeting BTK has proven to be one of the most
successful strategies for management of B-cell malignancies
owing to broad efficacy across a range of diseases, safety, and
dosing convenience of oral administration. BTK is an essential
component of the B-cell receptor intracellular signaling pathway,
mediating B-cell development, proliferation, and survival [20].
Aberrant BTK signaling plays a critical role in the development of
various B-cell malignancies including diffuse large B-cell lym-
phoma [21], CLL [22], mantle cell lymphoma (MCL) [23, 24],
Waldenström macroglobulinemia (WM) [25, 26], and marginal
zone lymphoma (MZL) [27].
The first-generation BTK inhibitor ibrutinib was initially synthe-

sized in 2007 and described as an irreversible BTK inhibitor with
potential therapeutic value in rheumatoid arthritis [28]. Clinical
studies in CLL [29–34], MCL [35], MZL [27], and WM [36]
subsequently showed benefits in these patients. Approval of
ibrutinib [37] by the United States Food and Drug Administration
(FDA) in 2013 changed the treatment paradigm of various
hematologic malignancies, and ibrutinib rapidly became the
standard of care for treating patients with certain subtypes of
non-Hodgkin lymphoma and CLL [38, 39]. Not only did treatment
standards change with the introduction of ibrutinib but also
clinical endpoints needed to be redefined. For example, ibrutinib

causes an initial mobilization of CLL cells to the peripheral blood;
this paradoxical cellular redistribution was initially mistaken for
progressive disease, but the reduction in lymphadenopathy and
improvement in cytopenias occurring in parallel suggests that
these effects are manifestations of response to the treatment.
Considering these unexpected effects of ibrutinib, isolated
progressive lymphocytosis would not necessarily be considered
a sign of disease progression unless there is other evidence of
progressive disease [40].
Despite the considerable improvement in outcomes and quality

of life in patients treated with ibrutinib, various adverse events
hamper its use (i.e., atrial fibrillation and ventricular dysrhythmias,
hypertension, bleeding, rash, and diarrhea). These adverse events
lead to treatment discontinuation in up to 23% of patients in
clinical studies and up to 49% of patients in community practices
[41]. Most of these adverse events are not observed in patients
with XLA and congenital deficiency of BTK [13], and thus it was
hypothesized that they may be related to off-target activity of the
kinase inhibitor. Later studies [42] showed that ibrutinib binding
to c-terminal Src kinase may be related to atrial fibrillation [43],
inhibition of Tec-family kinases may be related to bleeding events
[44], and inhibition of the epidermal growth factor receptor may
be related to rash and diarrhea [45]. Moreover, comparison of
changes in biomarkers among healthy patients, patients with XLA,
and patients with CLL treated with ibrutinib revealed an increase
in 6 biomarkers related to atrial fibrillation in a B-cell–independent
manner in patients treated with ibrutinib, but not in those with
XLA [46]. This evidence suggests that the broad kinome profile
and off-target inhibition of ibrutinib may be related to many of
these adverse events [42].
After the initial enthusiasm of ibrutinib, additional preclinical

studies and long-term clinical results provided evidence for certain
aspects that could be improved. Adverse events related to off-
target inhibition, primary and secondary resistances, and long-
term administration [47] highlighted the need to develop agents
that could build upon the successful outcomes of ibrutinib.
Development of various second-generation BTK inhibitors (e.g.,
acalabrutinib and zanubrutinib) was initiated to overcome the
limitations of ibrutinib.

DEVELOPMENT OF A NEXT-GENERATION BRUTON TYROSINE
KINASE, ZANUBRUTINIB
The BTK development program at BeiGene (San Mateo, California,
USA; and Shanghai, China) began in 2012, with the multi-
disciplinary collaboration between the medical, biochemistry,
discovery biology, and in vivo pharmacology departments at
BeiGene in China. This team screened more than 3000 compounds
in 2013 to find the molecule with the highest therapeutic
potential: BGB-3111 (the 3111th compound screened), later
named zanubrutinib [48]. The chemical design of zanubrutinib
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was guided by a structure-activity strategy to enhance specificity
for BTK, minimize off-target binding and associated toxicities, and
improve pharmacokinetic properties [48]. Zanubrutinib showed
greater selectivity versus other kinases during profile assessment
of 370 kinases (Fig. 3) [49], as well as potent inhibitory activity
against BTK; zanubrutinib demonstrated more than 50% inhibition
in seven kinases, whereas ibrutinib demonstrated more than 50%
inhibition in 17 kinases other than BTK (Table 1). Ibrutinib has
active metabolites with twofold higher systemic exposure than
the parent molecule. Although 1 of these active metabolites (PCI-
45227) is 15-fold less potent against BTK compared with the
ibrutinib parent molecule, the metabolite still has some activity for
kinases other than BTK, which may contribute to off-target
toxicities. In contrast, despite zanubrutinib undergoing extensive
metabolism (primarily via a cytochrome P450, family 3, subfamily
A [CYP3A]-mediated pathway), no active metabolites were
detected in the circulation [50]. The most abundant metabolite

in the plasma is the inactive mono-hydroxylate of the phenoxy
phenyl ring (BGB-7941), which represents less than 10% of the
total drug concentration in the circulation and is not considered to
contribute significantly to the effects of zanubrutinib [50, 51].
Zanubrutinib achieved 100% peripheral blood BTK blockade at a

dose of 40mg daily, and the clinical dose was optimized to achieve
94% and 100% BTK occupancies in lymph nodes, as proven by
biopsy results, at the approved doses of 160mg twice daily (BID) or
320mg once daily (QD), respectively [52, 53]. In comparison,
ibrutinib showed more than 90% blood BTK occupancy at the
approved dose of 420mg QD; however, in some patients BTK
occupancy in peripheral blood mononuclear cells fell below 80%
(Fig. 4), and systematic evaluation of deep tissue BTK blockade was
not performed on the dose-finding studies of ibrutinib [54, 55].
While high levels of peripheral blood BTK occupancy are seen with
several agents, zanubrutinib’s high plasma levels may enable
penetration into lymph nodes and other niches (i.e., bone marrow)
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which could account for the improved efficacy of zanubrutinib over
ibrutinib in randomized phase 3 studies in CLL and WM. Another
key attribute resulting from structural differences between
zanubrutinib and ibrutinib is the higher bioavailability of zanu-
brutinib and its ability to achieve sustained therapeutic exposure,
which may directly affect efficacy. At the approved dose, ibrutinib
concentration decreases below the half-maximal inhibitory con-
centration (IC50) level at 6 h after dose administration, whereas
zanubrutinib concentration remains above the IC50 level at all times
with both approved doses. In addition, the area-under-the-curve of

zanubrutinib is approximately eight times higher than that of
ibrutinib at a dose of 560mg QD (Fig. 5) [50, 52, 56]. The steady-
state exposures of zanubrutinib enable deep and durable BTK
inhibition in peripheral blood mononuclear cells and lymph nodes,
including any newly synthesized BTK molecules [52].
Zanubrutinib has a considerably improved drug-drug interac-

tion profile compared with ibrutinib. Drug-drug interaction studies
showed that zanubrutinib, in contrast to ibrutinib, could be
administered with CYP3A inhibitors by reducing the dose to
80mg QD with strong inhibitors, and 80mg BID with moderate

Table 1. Kinase profiling at concentrations of 100 × IC50 based on BTK IC50.

Targets with more than 50% inhibition are highlighted in red (RBC kinase panel, 1 μM ATP).
ABL2 Abelson tyrosine-protein Kinase, ARG ABL-related gene, ATP adenosine triphosphate, AXL anexelekto, BLK B lymphocyte kinase, BMPR2 bone
morphogenetic protein receptor type 2, BMX bone marrow X kinase, BRK breast tumor kinase, BTK Bruton tyrosine kinase, c-Src cellular sarcoma virus
transforming gene kinase, CSK C-terminal Src kinase, EGFR epidermal growth factor receptor, ERBB4 Erb-B2 receptor tyrosine kinase 4, ERN1/IRE1
endoribonuclease inositol-requiring enzyme 1, ETK epithelial and endothelial tyrosine kinase, FGR fetal growth restriction, FLT3 fms-like tyrosine kinase 3, FRK
Fyn-related kinase, HCK hematopoietic cell kinase, HER2 human epidermal growth factor receptor 2, HER4 human epidermal growth factor receptor 4, IC50 50%
inhibitory concentration, ITK interleukin-2-inducible T-cell kinase, JAK3 Janus kinase 3, LBK lymphocyte-specific protein tyrosine kinase, LCK lymphocyte-specific
protein tyrosine kinase, LYN lck/Yes-related novel protein tyrosine kinase, MEKK1mitogen-activated protein kinase 1, MKNK2MAPK interacting serine/threonine
kinase-2, MSK2 mitogen- and stress-activated protein kinase-2, PRKCD protein kinase C delta, PTK5 protein tyrosine kinase 5, RBC red blood cell, RPS6KA4
ribosomal protein S6 kinase, SRMS Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites, STK33 serine/threonine kinase
33, TEC thymic epithelial cells, TXK TXK tyrosine kinase, WNK1 with-no-lysine protein kinase, YES Y73 and Esh sarcoma kinase.
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inhibitors; no dose reduction was needed for coadministration of
mild CYP3A inhibitors [57, 58]. These improvements in pharma-
cokinetic properties allowed use in a broader spectrum of
patients, and having the option of BID and QD dosing schedules
and pills of 80 mg allow for a more convenient administration.
Because extrinsic factors do not affect the bioavailability,
zanubrutinib can be administered with or without food [57]. The
improved drug-drug interaction profile allows zanubrutinib
administration concomitantly with proton pump inhibitors, direct
oral anticoagulants, warfarin, and other medications relevant for
treating B-cell malignancies, if clinically desirable to do so. Patients
65 years and older with CLL frequently are under treatment with
anticoagulants, which increases the risk of bleeding. The fact that
zanubrutinib can be safely administered concomitantly with
anticoagulants without prohibitive risk of bleeding is important
for patient management [59]. In addition, the pharmacokinetic
profile of zanubrutinib is not directly affected by patient
characteristics such as ethnicity [60], or concomitant hepatic or
renal impairment. Patients with mild or moderate hepatic
impairment do not require dose modifications; in patients with
severe hepatic impairment, the dose is reduced to 80mg BID. For
patients with renal impairment, no dose modifications are
required [57, 58].

Clinical development of zanubrutinib
Not long after the preclinical characterization of zanubrutinib, a
decision was made for clinical development of the drug in
Australia owing to the country’s favorable regulatory environment
and rapid clinical research start-up capability. On July 15, 2013, a
meeting was held in Melbourne, Australia, with professors
Constantine Tam, Andrew Roberts, John Seymour, Andrew Grigg,
and Stephen Opat. This Australian meeting brought together

researchers with experience in BTK inhibitors and institutions with
the capacity to conduct phase 1, first-in-human studies. After
review of the preclinical data, a trial design, sketched on a napkin,
rapidly evolved into the formal study protocol, and 6 months later,
on August 25, 2014, the first patient received a dose of
zanubrutinib.
This phase 1 study (NCT02343120) included 17 patients with

B-cell malignancies in the dose-escalation part and 94 patients with
CLL/small lymphocytic lymphoma (SLL) in the cohort-expansion
part. The preliminary results from this study were presented at the
2015 American Society of Hematology Annual Meeting and
highlighted the potent efficacy, improved pharmacokinetic proper-
ties, and promising tolerability even at higher doses of zanubrutinib
[53, 61]. Prompted by these early data, a comprehensive develop-
ment program for zanubrutinib was organized.
The first clues to zanubrutinib being a potentially superior drug

to ibrutinib came from the observation of unexpectedly high very
good partial response (VGPR) rates in patients with WM in the
phase 1 study. Additionally, patients who had sequential intra-
patient escalation of zanubrutinib above the 80mg daily dose
(equivalent to ibrutinib 560mg) showed progressive improvement
in their immunoglobulin M response, which suggested that the
level of BTK inhibition could be further optimized in WM.
Furthermore, the early investigators found that the rate of atrial
fibrillation appeared to be lower than anticipated for the
population treated.

THE PRESENT: APPROVED INDICATIONS AND CURRENT
STATUS
Since 2019, there has been a continuous flow of study readouts,
publication of positive results, presentations in major congresses,
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and approvals relating to zanubrutinib. As of May 2023,
zanubrutinib has been approved in multiple indications in more
than 60 countries and regions. Zanubrutinib was initially approved
in 2019 in the United States for patients with previously treated
MCL, followed by approvals in China in 2020, and 21 additional
approvals in 2021 (Fig. 6) [57].

Mantle cell lymphoma
In November 2019, the FDA granted zanubrutinib accelerated
approval for the treatment of patients with MCL who have
received at least 1 prior therapy, based on the results from the
BGB-3111-AU-003 (NCT02343120) and the BGB-3111-206
(NCT03206970) studies. The former was the first-in-human, dose-
escalation study of zanubrutinib in various B-cell malignancies,
including 37 patients with relapsed or refractory (R/R) MCL and 11
patients with treatment-naive (TN) MCL. Patients with R/R MCL
had an overall response rate (ORR) of 87% with a complete
response (CR) rate of 30% at a median follow-up of 19.4 months;
the median PFS was 17.3 months. In this same study, patients with
TN MCL had an ORR of 82%, with 27% of patients achieving CR
[62, 63]. The latter study was conducted in China and evaluated
zanubrutinib in 86 patients with R/R MCL, with a resultant ORR of
83.7% and 77.9% of patients achieving CR. Median PFS was
33 months, and median OS was not reached after 35.3 months of
follow-up [64, 65]. A pooled safety analysis of both studies
reported low rates of atrial fibrillation (1.8%; 0.9% grade ≥3) and a
12.5% discontinuation rate due to adverse events [66].
Acalabrutinib was approved in October 2017 for patients with

R/R MCL [67] based on the results of 124 patients included in the
single-arm ACE-LY-004 study (NCT02213926) [68]. The ORR and
CR rate were 81% and 40%, respectively, after a median follow-up
of 15.2 months, and the estimated 12-month PFS was 67%. The
most frequent grade ≥3 adverse events were neutropenia,
anemia, and pneumonia; no cases of atrial fibrillation were
reported. Discontinuation rate due to adverse events was 7% [68].

Waldenström macroglobulinemia
Ibrutinib has proven to be beneficial for patients with WM, but
ibrutinib-related adverse events and reduced efficacy in patients
with CXCR4 mutations limit its use for that subset [69]. Preclinical
and early-phase results of zanubrutinib gave researchers the

confidence to run 2 head-to-head phase 3 studies against
ibrutinib. One of them, the ASPEN study (NCT03053440) in
patients with WM, formed the basis for the FDA approval on
August 31, 2021, of zanubrutinib in this indication. Patients with
the mutation of MYD88 L265P were randomized to zanubrutinib
(n= 101) or ibrutinib (n= 98) in cohort 1, and patients with
MYD88 wild-type WM (N= 28) received zanubrutinib in a
nonrandomized arm (cohort 2). In cohort 1, after 44.4 months of
median follow‑up, aggregated CR and VGPR rates were 36.3%
versus 25.3% for zanubrutinib and ibrutinib, respectively; although
not statistically significantly different, hazard ratio estimates
favored zanubrutinib in cohort 1 (PFS: HR 0.63, 95% CI
0.36–1.12) [70]. These results should be analyzed in the context
of the stratification methodology used for CXCR4mutations, which
underreported the number of patients with CXCR4 WHIM
mutations. When using a more sensitive next-generation sequen-
cing assay, an imbalance favoring ibrutinib (with 22% of patients
with CXCR4 WHIM mutations vs 33% in the zanubrutinib group)
was observed. This impacted the comparison of responses
between the 2 groups because CXCR4 WHIM mutations are
associated with lower VGPR rates. Median PFS and OS have not
been reached. PFS rates at 42 months were 78.3% for zanubrutinib
and 69.7% for ibrutinib. In cohort 2, patients with MYD88 wild-type
WM had a 65% response rate, including 1 CR [70].
ASPEN was the first head-to-head comparison of 2 BTK

inhibitors to be reported and gave a unique opportunity to
examine the different toxicities of first- and second- generation
BTK inhibitors. In this comparison, zanubrutinib was associated
with fewer adverse events leading to dose reductions, treatment
discontinuations, and deaths, compared to ibrutinib. In addition,
atrial fibrillation and bleeding rates were lower in the zanubrutinib
arm at all time intervals compared to that of ibrutinib, and
hypertension rates trended lower over time (P= 0.16). Even
though neutropenia was more frequent in the zanubrutinib group,
the rate of infections was similar (any grade) or higher (grade ≥3)
in the ibrutinib group [70]. Another earlier study of patients with
WM was BGB-3111-AU-003, reporting ORR and CR+ VGPR rates of
93.9% and 51%, respectively, a 24-month PFS rate of 76.2%, and a
24-month OS of 91.5% in 49 patients with R/R WM. Among the 24
patients with TN WM, all had a response and 33.3% achieved
CR+ VGPR, and the 24-month PFS and OS rates were 91.5% and

THE JOURNEY OF ZANUBRUTINIB 
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100%, respectively [71]. Finally, the phase 2 trial BGB-3111-210
(NCT03332173) included 44 high-risk patients with R/R WM
treated with zanubrutinib. The study reported a 33% CR+ VGPR
rate and a 24-month PFS of 61%, with most grade ≥3 adverse
events being hematologic with no reports of atrial fibrillation or
flutter. These results were consistent across patient subgroups
including patients with MYD88 L265P and/or mutation of CXCR4
WHIM [72].

Marginal zone lymphoma
Zanubrutinib received accelerated approval from the FDA on
September 14, 2021, for patients with R/R MZL who have received
at least 1 anti-CD20–based regimen. The MAGNOLIA study
(NCT03846427), a single-arm phase 2 study, showed an ORR of
74% with a 24% CR rate at a median 10.7 months of follow-up. The
2-year survival rate was 86% in patients with MZL, and responses
were observed in all MZL subtypes and in difficult-to-treat disease
subgroups. One of 68 patients had grade ≥3 atrial flutter, and 2
patients discontinued zanubrutinib due to adverse events [73].

Chronic lymphocytic leukemia and small lymphocytic
lymphoma
On January 19, 2023, zanubrutinib received FDA approval in CLL/
SLL based on the second head-to-head study versus ibrutinib
(ALPINE) and the SEQUOIA study. The ALPINE study
(NCT03734016), which included patients with R/R CLL/SLL who
were randomized to zanubrutinib (n= 327) or ibrutinib (n= 325),
demonstrated superiority of zanubrutinib over ibrutinib in ORR
and PFS. The ORR (CR, nodular partial response, or partial
response) was significantly (P= 0.0133) higher with zanubrutinib
(80.4%) versus ibrutinib (72.9%), and the PFS was significantly
(P= 0.002) longer with zanubrutinib versus ibrutinib, with a
hazard ratio of 0.65 (95% CI 0.49–0.86). This difference was
consistent across patient subgroups, including patients with
deletion of the 11q22.3 chromosomal region, or 17p deletion/
mutation of tumor-protein p53 [74]. In the high-risk population
with del(17p13.1)/TP53 mutation, the superior PFS benefit with
zanubrutinib remained, with a hazard ratio of disease progression
or death of 0.53 (95% CI 0.31‒0.88) by investigator assessment
[74]. Zanubrutinib safety/tolerability profile was also improved
over ibrutinib with fewer adverse events leading to treatment
discontinuation and fewer cardiac events, including fewer cardiac
events leading to discontinuation or death.
Acalabrutinib is the only other second-generation BTK inhibitor

to be compared directly with ibrutinib in a clinical study. The
ELEVATE-RR study (NCT02477696) was a noninferiority study of
acalabrutinib versus ibrutinib in patients with previously treated
CLL who had del(17p13.1) and/or del(11q22.3). In this study,
acalabrutinib met its primary endpoint of noninferiority with a
median PFS of 38.4 months in both arms (HR 1.0; 95% CI 0.79‒
1.27) [75]. Although cross-trial comparison is difficult owing to
various factors (e.g., different patient populations) and interpreta-
tion should be made with caution, it should be noted that unlike
zanubrutinib, which was observed to have improved benefits over
ibrutinib in the high-risk del(17p13.1)/TP53 mutation subgroup,
this was not seen with acalabrutinib.
In the SEQUOIA study (NCT03336333) of zanubrutinib versus BR

in patients with TN CLL/SLL, patients without del(17p13.1) were
randomly assigned to zanubrutinib (n= 241) or BR (n= 238);
those with del(17p13.1) CLL/SLL were assigned to zanubrutinib in
a different arm (n= 111). The ORR was 94.6% and 85.3% in the
zanubrutinib and BR arms, respectively, including 7% and 15% of
patients who achieved CR. Patients treated with zanubrutinib
showed improved PFS versus those treated with BR (HR 0.42; 95%
CI 0.28–0.63; P < 0.0001), and PFS was consistently longer with
zanubrutinib in most subgroups such as older patients, patients
with high-risk disease, patients with Binet stage C disease, bulky
disease, and presence of unmutated IGHV, or del(11q22.3). Among

patients with del(17p13.1) CLL/SLL, 24-month PFS and 24-month
OS rates were 89% and 93.6%, respectively. Treatment disconti-
nuations, dose reductions, and adverse events leading to
treatment discontinuation were less frequent in the zanubrutinib
arm [76]. With the longer follow-up in SEQUOIA, the estimated 42-
month PFS rates were 82% for the zanubrutinib arm and 50% for
the BR arm, and the 42-month OS rates were 89% and 88%,
respectively. The tolerability profile of zanubrutinib remained
acceptable, including low rates of atrial fibrillation [77].
In the ELEVATE-TN study (NCT02475681), the clinical effects of

acalabrutinib, with or without obinutuzumab, were compared
against chlorambucil with obinutuzumab alone in patients with
TN CLL [78]. Acalabrutinib, as a single agent or in combination
with obinutuzumab, showed improved PFS over obinutuzumab-
chlorambucil chemoimmunotherapy. The side-effect profile was
acceptable and consistent with those of earlier results and other
second-generation BTK inhibitors.

THE FUTURE: ONGOING RESEARCH WITH ZANUBRUTINIB
As of May 2023, zanubrutinib has been studied in a broad global
clinical development program in more than 3900 patients in 35
clinical studies across 28 countries, and these numbers keep
growing (Table 2).
Because of its lower toxicity profile, zanubrutinib is also being

studied in an exploratory phase 2 study (NCT04116437) in
patients with B-cell malignancies who have been treated and
are intolerant to ibrutinib or acalabrutinib. This study included
67 patients with B-cell malignancies who became intolerant to
ibrutinib, acalabrutinib, or both. Most ibrutinib- or acalabrutinib-
related toxicities did not recur or recurred at a lower severity
with zanubrutinib. In addition, disease control was maintained
by 94% of patients. The results of this study highlight the safety
and efficacy of zanubrutinib in this group of patients with
otherwise limited treatment options and potentially extend the
opportunity for clinical benefit within the drug class of covalent
BTK inhibitors [49].
To further evaluate therapy outcomes and benefit a greater

number of patients, additional studies were designed. Ongoing
studies include a phase 3 study (NCT04002297) of newly
diagnosed patients with MCL (zanubrutinib + rituximab vs BR),
the phase 2 study CHESS (NCT04624958) in patients with
previously untreated MCL (zanubrutinib + rituximab vs ritux-
imab, dexamethasone, cytarabine and oxaliplatin), and the
phase 3 study MAHOGANY (NCT05100862) in patients with R/R
MZL (zanubrutinib + rituximab vs lenalidomide + rituximab).
The MAHOGANY study also includes patients with follicular
lymphoma and will be the phase 3 confirmatory study for this
indication. The phase 2 study ROSEWOOD (NCT03332017) tested
the zanubrutinib + obinutuzumab combination versus obinu-
tuzumab monotherapy in patients with R/R follicular lymphoma.
Results of the ROSEWOOD study with a median follow-up of
20.2 months showed that median PFS was 28 months for the
combination and 10.4 months for obinutuzumab monotherapy,
with an HR of 0.50 (95% CI 0.33‒0.75); P= 0.0007 [79].
Accumulation of data from patients treated with zanubrutinib

has provided robust insights on its overall safety and tolerability
profile. Zanubrutinib typically is well tolerated, with generally
mild-to-moderate adverse events that are usually manageable and
not associated with frequent treatment discontinuations. Pooled
data from 10 clinical trials in B-cell malignancies, including 1550
patients treated with zanubrutinib, showed low treatment
discontinuation rates due to adverse events [80, 81]. The
prevalence of adverse events of special interest such as infections,
hemorrhage, neutropenia, thrombocytopenia, hypertension, ane-
mia, secondary malignancies, and atrial fibrillation/flutter tend to
remain constant or decrease over time [81]. In addition,
zanubrutinib appears to be generally associated with fewer
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cardiovascular adverse events compared with ibrutinib. Based on
pooled data from the ASPEN and ALPINE studies, the exposure-
adjusted incidence rate of cardiovascular adverse events was
significantly lower for zanubrutinib compared to ibrutinib,
including atrial fibrillation (P < 0.0001), and symptomatic ventri-
cular arrhythmias (P= 0.0028) [82].
The promising safety profile of zanubrutinib allows for the

exploration of new combinations with agents that may provide
synergistic effects. New studies are ongoing of zanubrutinib in
combination with other targeted therapies, including BCL-2
inhibitors, PI3K inhibitors, chimeric antigen receptor (CAR)
T-cell therapy, and checkpoint inhibitors. The phase 2 ZANU-
VEN study (NCT05168930) is assessing the zanubrutinib +
venetoclax combination in CLL; the zanubrutinib + BGB-10188
combination is being tested in B-cell malignancies in a phase
1/2 study (NCT04282018); and the triplet combination of
zanubrutinib + venetoclax + obinutuzumab is being studied
in patients with CLL in a phase 2 study (BoVEN: NCT03824483).
This study reported deep molecular responses with a median
follow-up of 40 months, with 96% and 92% of patients
achieving negative minimal residual disease in peripheral
blood and bone marrow, respectively, and good tolerability.
Patients with negative minimal residual disease by flow
cytometry (MRD-FC) had a MRD-FC free survival of 29.8 months
[83].
Some evidence suggests that the combination of BTK inhibitors

with CAR T-cell therapies may increase CAR T-cell expansion,
viability, and engraftment during the manufacturing process, and
enhance CAR T-cell activation and effector function [84–87]. An
ongoing phase 3 clinical trial (NCT05020392) in China is assessing
the efficacy and safety of anti-CD19 CAR T-cell therapy with
concurrent BTK inhibitor (ibrutinib, zanubrutinib, or orelabrutinib)
in patients with R/R B-cell malignancies, with expected results by
the end of 2023. Results published highlight the clinically
significant relevance of zanubrutinib in the treatment armamen-
tarium of B-cell malignancies. Confidence in the benefits of
zanubrutinib is exemplified by its inclusion in international
treatment guidelines for CLL and non-Hodgkin lymphoma [88, 89].
Despite the benefits of BTK inhibitors in the treatment of B-cell

malignancies, some unmet needs require further research.
Continuous use of BTK inhibitors may lead to the acquisition of
mutations in the BTK binding site (cysteine 481) or in other
components in the signaling pathway (such as PLCG2). New
noncovalent BTK inhibitors that do not depend on cysteine 481
(e.g., pirtobrutinib) are under development, with the hope of
overcoming resistance mechanisms [90]. Enrichment in mutations
that may confer resistance have been reported after treatment
with specific BTK inhibitors. For example, the mutation leucine
528 substitution to tryptophan has been detected mainly in
patients treated with zanubrutinib but not ibrutinib. Moreover,
this mutation has shown cross resistance with pirtobrutinib [91].
These results highlight the importance to further investigate
resistance mechanisms and the impact on different treatment
choices. Other strategies targeting BTK include specific protein
degraders, including NX-2127 which has been shown to degrade
BTK independently of C481 mutations [92, 93]. These new
strategies may help reduce resistance mutations and provide
therapeutic alternatives upon disease progression in patients
treated with covalent BTK inhibitors in earlier lines of treatment.
Moreover, AbbVie recently announced the intention to with-

draw ibrutinib from the United States market for R/R MCL and R/R
MZL based on results of phase 3 confirmatory studies, necessitat-
ing alternative therapies for these patients [94].
In conclusion, this review of the history of zanubrutinib

highlights the importance of multidisciplinary collaborative
research, from early chemical research to clinical studies, and
provides an example of how progress is incremental. Despite
remarkable efficacy demonstrated with first-generation

compounds, there is always room for improvement in molecular
design and resultant patient care.
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