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Abstract: 
 
 
Waldenstrom macroglobulinemia (WM) and its precursor IgM gammopathy are distinct 
disorders characterized by clonal mature IgM-expressing B cell outgrowth in the bone 
marrow. Here we show by high-dimensional single-cell immunogenomic profiling of 
patient samples that these disorders originate in the setting of global B cell 
compartment alterations, characterized by expansion of genomically aberrant 
extrafollicular B cells of the non-malignant clonotype. Alterations in immune 
microenvironment preceding malignant clonal expansion include myeloid inflammation 
and naïve B and T cell depletion. Host response to these early lesions involves clone-
specific T cell immunity that may include MYD88 mutation-specific responses. 
Hematopoietic progenitors carry the oncogenic MYD88 mutations characteristic of the 
malignant WM clone. These data support a model for WM pathogenesis wherein 
oncogenic alterations and signaling in progenitors, myeloid inflammation and global 
alterations in extrafollicular B cells create the milieu promoting extra-nodal pattern of 
growth in differentiated malignant cells. 
 
  



3 
 

 
 
Statement of Significance: 
 
These data provide evidence that growth of malignant clone in WM is preceded by 
expansion of extrafollicular B cells, myeloid inflammation and immune dysfunction in the 
preneoplastic phase. These changes may be related in part to MYD88 oncogenic 
signaling in pre-B progenitor cells and suggest a novel model for WM pathogenesis. 
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Introduction: 
 
Waldenstrom macroglobulinemia (WM) is a clinically distinct B cell malignancy 
characterized by progressive growth and accumulation of an IgM-expressing 
lymphoplasmacytic clone(1, 2). Clinical malignancy in WM is preceded by a precursor 
state termed as IgM monoclonal gammopathy of undetermined significance (MGUS)(1). 
Genetic analyses have demonstrated recurrent mutations in myeloid differentiation 
primary response-88 (MYD88) gene in the vast majority of WM patients, wherein they 
are found to involve the entire expanded B cell clone(3-5). However, mutations in the 
MYD88 gene are neither specific nor sufficient for the pathogenesis of WM, and can be 
detected in IgM MGUS as well as in other B cell lymphomas, including central nervous 
system or testicular lymphomas (4, 6-11). The clinical phenotype of both IgM MGUS 
and WM is distinct and characterized by the infiltration of the bone marrow as the 
dominant site of tumor growth. While patients with IgM MGUS are asymptomatic and 
exhibit low clonal burden, onset of clinical malignancy is often characterized by the 
development of anemia and progressive tumor infiltration. In spite of recent advances in 
the genetics of WM tumor cells, the mechanisms underlying the pattern of tumor growth 
as well as the cell of origin of this malignancy remain poorly understood(12-14).  
 
 
Current therapy for WM is based on monoclonal antibodies targeting B cells, strategies 
targeting B cell receptor (BCR) signaling, as well as systemic chemotherapy(1). While 
these therapies lead to high rates of tumor regression, they are not curative. Immune 
system has emerged as a promising strategy to target tumors, including those in the 
lymphoid system. Properties of the host immune response and the nature of tumor 
immune microenvironment are an important determinant of outcome in several 
malignancies and may impact the evolution of premalignant states. However, current 
information about immune microenvironment in WM and IgM MGUS are limited to 
studies evaluating only a small number of parameters(12, 15-17), and data with 
application of newer high-content single cell approaches in WM and MGUS to probe 
early changes in the immune microenvironment are limited. Importantly, evidence that 
the immune system can mediate tumor-specific immune recognition of WM tumor cells 
is lacking.  In this study, we combine several single cell proteomic and genomic tools 
with functional studies to gain insights into immunobiology and host response in WM 
and its precursor IgM MGUS.  
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Results: 
 
In order to better understand early events in the pathogenesis of WM, we analyzed the 
bone marrow mononuclear cells of patients with IgM MGUS (n=8) or newly diagnosed / 
previously untreated WM (n=8) (suppl Table1 for patient characteristics) with a 
combination of mass cytometry and CITE-seq and compared it to those from age-
matched healthy donors (HD, n=5)(Fig1a). Mass cytometry analyses revealed an 
increase in CXCR5neg B cells in WM, along with a relative decline in myeloid cells (Fig 
1b, suppl Fig1). Importantly, these changes were observed as early as the MGUS 
stage, when the clonal burden is low. Mass cytometry analysis also revealed an 
increase in bone marrow T cells in patients with MGUS(Fig 1b, suppl Fig1). CITE-seq 
analyses on 84,128 single cells (HD 20946 cells, MGUS 29780 cells, WM 33402 cells) 
identified 42 distinct clusters, which were also broadly classified into B / 
lymphoplasmacytoid (LPC), T/NK, monocyte/myeloid and precursor cell types (Fig1c-
1d, suppl Fig2-3), and again confirmed alterations in myeloid, and B and T cell lineages 
(Fig1e, suppl Fig4). Together, these data utilize complementary tools to show that bone 
marrow cells in both WM and IgM MGUS are characterized by alterations in several 
hematopoietic lineages compared to healthy donor counterparts. 
 
 
Changes in B and lympho-plasmacytoid cells 
As WM is a B cell malignancy, we first focused on analyses of CD19+ cells by mass 
cytometry. Changes in the B cell compartment were evident as early as IgM MGUS, 
with an increase in CXCR5neg B cells and decline in naïve B cells, although the clonal 
population at this stage is still small (Fig2a-2d, suppl Fig5). CXCR5 is well recognized 
as a critical gene for entry of B cells into lymphoid follicles(18) and CXCR5negCD21lo B 
cells have been recently appreciated as cells in the extrafollicular (EF) pathway of B cell 
differentiation(19). The CXCR5negCD19+ population consisted of two distinct 
populations, with one representing mature B cells (CXCR5neg population 1), and another 
population expressing CD38 that includes lympho-plasmacytoid cells (CXCR5neg 
population 2) (Fig2b). Malignant clone in WM is characterized by the expression of 
clonotypic kappa or lambda light chain, which secretes a clonal Ig clinically documented 
as a M spike. While the observed alterations in B cells were enriched in the malignant B 
cells expressing clonotypic light chain, they were also observed in the B cells 
expressing the opposite (or non-clonal) light chain (Fig2e). In order to validate these 
findings, we also analyzed CD19+ B cells by CITE-seq (overall strategy in suppl Fig2). 
UMAP clustering of B cells based on antibody staining identified 10 distinct clusters, 
which again revealed progressive loss of IgD+CD27- naïve B cells (cluster 2) from HD 
donors to IgM MGUS and WM, along with an increase in clusters containing CXCR5neg 
B cells (cluster 3) (Fig3a-c). Several of these clusters also expressed plasma cell 
markers such as BCMA and CD138, consistent with lympho-plasmacytoid differentiation 
of B cells in WM (suppl Fig6). Trajectory analysis of CD19+ B lineage cells identified two 
distinct trajectories originating from pre-B cells, with one enriched in HD and another in 
WM (suppl Fig7). UMAP clustering of CD19+ cells based on transcriptome identified 24 
distinct clusters (Fig3d-f) (suppl Fig8). Of note, B cells from WM patients as well as 
some MGUS patients formed distinct clusters, indicating that the malignant clone in 



6 
 

each patient is transcriptionally distinct, analogous to prior studies in other 
malignancies(20, 21) (Fig3e). Clonality of B cells in these patient-specific clusters was 
confirmed by B cell receptor (BCR) sequencing, as well as computational imputation of 
BCRs from single cell transcriptome data (suppl Fig9). Examples of top genes 
characterizing specific clones in individual patients include genes implicated in 
lymphomagenesis including EZH2, CD79b, CXCR4, BCL2, and LT-(Fig3f). Overall, B 
cells from WM and IgM MGUS patients were transcriptionally distinct from those in HD. 
Top pathways increased in WM and IgM MGUS B cells included NFkB pathway and IL-
6/STAT3 pathway, consistent with prior genomic studies with bulk tumor cells (suppl 
Fig10-11)(7).    
 
Changes in non-clonal light chain expressing B cells and pre-B cells 
Based on the findings from mass cytometry relating to B cells expressing non-clonal 
light chain (for example, kappa light chain in a patient with IgM lambda M spike), we 
further evaluated these cells by CiTE-seq. Polyclonal nature of these B cells and lack of 
clonal BCR was verified by BCR sequencing (shown as an example in supplFig9c). 
Transcriptome of these non-clonal light chain expressing B cells in WM as well as 
MGUS patients also revealed several changes compared to their HD counterparts, with 
increased expression of genes such as Pim1, TCF4, and decrease in HLA-DR 
previously implicated in lymphoma biology(suppl Fig12). 
 
In addition to mature B cells, transcriptomes of CD19+CD10+ pre-B cells from WM or 
IgM MGUS patients also revealed several alterations compared to HD pre-B cells 
(supplFig13). Interestingly, signatures derived from differentially expressed genes in 
WM B cells compared to HD were also found to be enriched in WM pre-B cells (suppl 
Fig 14). Top pathway enriched in WM pre-B cells included IL6-STAT3 pathway, as also 
seen in WM B cells (suppl Fig15). Taken together, these data demonstrate that clonal 
populations in WM and IgM MGUS originate in the context of more global alterations in 
B as well as pre-B cells, with resultant expansion of EF B cells.  
 
Changes in the myeloid compartment 
Besides B cells, the most prominent changes in the immune microenvironment were in 
the myeloid compartment (Fig1b,1e). UMAP clustering of CD3 and CD19-depleted cells 
was utilized to identify distinct clusters that broadly fell into myeloid, NK and progenitor 
clusters and were analyzed separately (Fig4a) (suppl Fig16). Analysis of 
CD14+/CD11c+ myeloid compartment revealed that both IgM MGUS and WM were 
associated with marked decline in clusters of classical monocytes (cluster1) and a 
relative increase in a distinct cluster of myeloid cells (cluster 7) particularly in MGUS 
(Fig4a-4d) (Suppl Fig17). This myeloid population was characterized by a distinct 
genomic signature of inflammation-associated genes such as IL1, CCL4, CCL3, IL6, 
NLRP3 and CXCL3 (Fig4e). Pathway analysis was consistent with inflammation-
associated signaling, particularly in MGUS (Fig4f). Together these data suggest that 
activation of myeloid inflammation is an early feature of MGUS, before the evolution of 
the malignant clone.  
 
Changes in innate cells 
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Evaluation of CD3-CD56+ NK clusters identified alteration in NK cells, most prominently 
in the WM cohort (Fig4a,4c)(suppl fig18). These changes were characterized by greater 
expression of lytic genes /exhaustion markers in WM NK cells, along with loss of 
interferon-signature in these cells (suppl Fig18) consistent with the concept of immune 
exhaustion and dysfunction in NK cells with evolution of WM. Pathway analysis of 
differentially expressed genes in NK cells from both MGUS and WM revealed 
decreased interferon signaling consistent with NK dysfunction (suppl Fig19).  
 
Changes in T cells and evidence of tumor-specific immunity 
Analysis of T cell compartment by mass cytometry revealed evidence of T cell activation 
with a decrease in naïve CD8 T cells and increased CD8+ T cells expressing granzyme 
(Fig5a-d). These cells also express high levels of Eomes and T-bet and low levels of 
TCF1(Fig5b). Notably, expression of PD1 was not a prominent feature of these cells, 
which expressed Tigit instead (Fig5b). Analysis of transcriptomes of T cells between 
WM or MGUS cohorts and HD revealed that as with mass cytometry, the most 
prominent changes were an increase in lytic genes and markers associated with T cell 
exhaustion in WM/MGUS CD8+ T cells, concurrent with loss of interferon-response 
genes (Fig5e,5f). Changes in interferon-response genes were also seen in CD4+ T 
cells(suppl Fig20). Pathway analysis confirmed changes in T cells, most notably as 
decline in interferon response (suppl Fig21-22). Together, these data show that 
changes in the T cell compartment begin early in MGUS, before the establishment of 
progressive malignant clone, and are characterized by progressive depletion of naïve T 
cells and instead enrichment of terminal effector T cells. 
 
Although the T cell phenotypes are consistent with evidence of T cell activation in vivo, 
whether the immune system mediates specific recognition of WM cells in vivo is not 
known. In order to test this directly, we analyzed reactivity of freshly isolated blood/bone 
marrow T cells to autologous monocyte-derived dendritic cells (DCs) loaded with 
autologous tumor cells. In all patients tested, freshly isolated T cells could mediate 
tumor-specific immune recognition (Fig6a). In order to further evaluate if these T cells 
still retained proliferative capacity and could be enriched further, we cultured these cells 
with autologous tumor-loaded DCs. DC-mediated stimulation led to expansion of tumor-
specific T cells in culture (Fig6b). Tumor-reactivity persisted following depletion of CD4+ 
T cells, indicating that it consisted predominantly of CD8+ T cells (Fig6c). MYD88 
L265P is a common and recurrent mutation found in WM cells. In order to test whether 
anti-tumor T cell reactivity includes MYD88-specific T cells, we analyzed reactivity to 
mutant and wild-type peptides in blood/marrow mononuclear cells, with peptide-specific 
stimulation. Data from representative responder and non-responder patients are shown 
in Fig6d. Overall, reactivity specific for mutant MYD88 peptide was detected in 5 of 15 
patients tested (Fig6e). Together, these data demonstrate that the immune system is 
capable of mediating tumor-specific recognition of WM cells, that includes reactivity to 
mutant MyD88 in a subset of patients.  
 
Genetic alterations in precursor cells 
The findings discussed above demonstrate that the although the expanded clone in WM 
has the phenotype of mature IgM+ B cells, the evolution of the malignant clone occurs 
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in the context of more global genomic and phenotypic aberrancies in hematopoiesis, 
which precede the expansion of the clone. In order to test whether genomic alterations 
(including MYD88 mutations) previously characterized in the mature B cell clone can 
also be detected in earlier progenitors, we flow-sorted CD19+CD10- mature B cells, as 
well as less mature progenitors (LinnegCD19+CD10+ pre-B cells, LinnegCD19negCD34neg 
and LinnegCD19negCD34+ progenitors) from 5 patients with WM and 2 HD and analyzed 
their genomes by exome sequencing (gating strategy in suppl Fig23). In all patients 
studied, the MYD88 L265P mutation could be detected in pre-B progenitor 
compartments and involved the entire mature B cell clone (Fig7a-c). In 4 of the 5 
patients studied, the MYD88 L265P mutation was detected with variant allele frequency 
(VAF) of >10% in at least one progenitor compartment (>10% VAF in CD19+CD10+ 
cells in 3 of 5 patients), indicating its detection in over 20% of progenitor cells (Fig7c). In 
contrast, MYD88 L265P mutations were not detected in any fraction from HD marrow 
(suppl Fig24). The finding that MyD88 mutant fractions show clear expansion (>10% 
VAF / 20% of cells) in CD19+CD10+ preB fractions suggests that this is not a function 
of low level contamination during flow sorting. This is also supported by the finding that 
several SNVs were not shared between sorted fractions. The detection of MYD88 
L265P by exome sequencing was verified by allele-specific qPCR, which yielded similar 
VAF estimates (supplFig25a) and confirmed the detection of MYD88 L265P mutations 
in precursor compartments (suppl Fig25b). MYD88 L265P was also detected by PCR at 
low levels in the CD19+CD10- cells and at least one other progenitor compartment in 
MGUS marrow but not in any of the sorted populations in HD (suppl Fig25c-d). We also 
tested whether MYD88 mutations could be detected in circulating B cells expressing the 
non-clonal light chain. Analysis of flow sorted B cells (based on expression of CXCR5 
and Ig light chain) by PCR revealed that low levels of MYD88 mutation could be 
detected in the non-clonal IgL+ B cells in WM patients but not HD (suppl Fig25e-f). 
Together, these data demonstrate that MYD88 L265P mutations can occur early in 
lymphopoiesis in WM, before the expansion of the malignant B cell clone, and are not 
restricted to the expanded clonal population.         
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Discussion: 
 
These data demonstrate that the preneoplastic phase of WM is characterized by a 
distinct immune landscape with marked alterations in non-clonal B cell compartment. 
Coupled with the detection of MYD88-L265P mutations in early pre-B progenitors, these 
data also suggest that although the expanded clonal population in WM has the 
phenotype of a mature B cell, the clone emerges in the context of alterations in earlier B 
progenitors that begin well before expansion of the malignant clone. 
 
 
Changes in the B cell compartment are manifest not only as a decline in normal naïve B 
cells but marked increase in EF B cells with CXCR5negCXCR4+ phenotype. Importantly, 
while clonal B cells in WM are also often CXCR5neg, changes in EF B cells are also 
observed in those expressing non-clonal immunoglobulin light chain. These non-clonal 
cells also overexpress several genes such as Pim1 and TCF4 previously implicated in 
lymphomagenesis(22, 23).  These data are therefore consistent with the concept that 
WM and IgM MGUS clones develop in the context of global alterations of B cells with 
expansion of aberrant non-clonal EF B cells. Recent studies have demonstrated 
enhanced autoreactivity in EF B cells implicating them in several autoimmune states(19, 
24). The observed expansion of EF B cells in WM and IgM MGUS may therefore 
underlie the increased risk of autoimmunity in these disorders(25). The observed 
decline in naïve B cells may lead to reduced response to pathogens and vaccines in 
these patients(26, 27).  
 
 
The mechanism underlying the observed increase in EF B cells is not known but may 
be related in part to aberrant MYD88 signaling, based on our finding of MYD88 
mutations in pre-B cells. MYD88 has been implicated in both B cell as well as myeloid 
differentiation, the latter being responsible for its name(28, 29). MYD88 plays a central 
role in toll-like receptor (TLR) signaling and this pathway was recently suggested to play 
a critical role in B cell differentiation along the EF pathway (30, 31). Transformation of 
cells in the EF pathway may also help explain the predominantly extra-nodal / bone 
marrow-restricted pattern of tumor growth in WM. It is also notable that in addition to 
WM, MYD88 L265P mutations are also highly prevalent in some other extra-nodal 
lymphomas such as central nervous system or testicular lymphoma(32).  
 
 
Our studies also provide the first evidence of tumor-specific immune recognition in WM. 
T cell compartment in WM and IgM MGUS also exhibited depletion of naïve T cells and 
concomitant increase in effector populations consistent with in vivo activation and 
similar to findings in other hematologic malignancies(21, 33). Importantly, evidence of 
immune dysfunction with attrition of TCF1+ stem like memory T cells and increase in 
terminally differentiated T as well as NK cells begins early in the MGUS stage, before 
the malignant clone is established, similar to recent findings in IgG MGUS(33). Although 
these T cells express markers of exhausted T cells, tumor-specific T cells could be 
expanded in culture and retained capacity for tumor-reactive cytokine production. In 
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order to measure tumor-specific immunity, we prioritized dendritic cell (DC)-based 
cross-presentation assays, which allow detection of immunity against multiple antigens. 
Our studies also show that at least in some patients, the MYD88 L265P mutation is 
immunogenic. While WM-specific T cells were present in all patients tested, MYD88-
specific reactivity was observed only in a subset, suggesting that other neoantigens 
may also be targets of WM-specific response in this setting. Immunogenicity of MYD88-
L265P in some WM patients is consistent with recent studies priming mutation-specific 
T cell receptors (TCRs) in healthy donors (34); however further studies are needed to 
better understand the functional properties of MYD88-L265P-specific T cells in WM 
tumor bed and identify specific MHC haplotypes wherein high-affinity TCRs could be 
harnessed for immunotherapy. Further studies are also needed to quantify the degree 
to which mutant MYD88 is a target of global WM-specific immunity. This analysis was 
hampered in the current study by limitations of sample and HLA restriction. Harnessing 
pre-existing immune response in WM patents may in principle also be feasible via 
blockade of immune checkpoints, particularly Tigit, overexpressed in these cells.  
 
 
Our data suggest a novel model for the pathogenesis of WM, wherein aberrant increase 
in polyclonal CXCR5negCXCR4+ EF B cell compartment create the milieu for the 
emergence of MGUS (Fig7d). MYD88 mutations are not only present in the malignant B 
cell clone, but also earlier pre-B progenitors. In some patients, the mutant preB 
compartment was expanded to >20% of the preB compartment. The presence of 
mutations in even earlier progenitors requires further study, however in at least one 
patient (WM patient 1 in Fig 7), the mutant fraction accounted for >20% of CD34+ 
CD19- cells, indicating inter-patient heterogeneity relating to detection and expansion of 
the mutant fraction in earlier progenitors in some WM patients. Humanized models(35) 
that permit efficient growth of WM cells may be needed to better understand the biology 
of progenitor compartments in WM. Evolution of precursor states to WM may depend 
both on acquisition of additional genomic changes in tumor cells and alterations in non-
malignant cells. This model is similar to emerging data for polyclonal origins of non-IgM 
monoclonal gammopathies with the pre-MGUS phase beginning in early decades of 
life(36-38). It is also consistent with the view that MYD88 mutations are not sufficient for 
the development of WM or other MYD88-driven lymphomas and additional alterations in 
tumor cells and/or host response are needed(8, 9). Immune microenvironment in the 
precursor state is also characterized by myeloid inflammation. The inflammatory 
environment may promote the malignant clone but also induce immune exhaustion. Our 
data that the immune system can mediate WM-specific immune responses supports 
potential for immune-mediated control, also suggested in MYD88-driven murine 
lymphoma models(39). The concept that alterations in hematopoietic progenitors may 
underlie the development of mature B cell malignancies has also been previously 
suggested in the case of some other B cell malignancies such as chronic lymphocytic 
leukemia and hairy cell leukemia(40-42).  
 
 
These data have several implications for biology and therapy of WM. Homing properties 
of EF cells based on lack of CXCR5 expression may explain the predominantly extra-
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nodal pattern of tumor involvement in WM. The presence of oncogenic mutations in 
earlier progenitors lacking clonal B cell receptor (BCR) suggests that oncogenic 
signaling may contribute to changes not just in tumor cells, but also non-malignant cells 
in the tumor microenvironment. Targeting MYD88 mutant progenitors as well as 
harnessing the ability of the immune system to target these tumors may be needed to 
improve therapy and curability of WM. With increasing appreciation of age-associated 
genomic alterations in hematopoiesis, this issue also needs broader evaluation across 
human tumors.   
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Methods:  
 
Patients:  
Bone marrow specimens from patients with a diagnosis of MGUS or WM (1) were 
obtained following written informed consent from patients. Studies were approved by 
Emory institutional review board and were conducted in accordance with recognized 
ethical guidelines. Specimens from healthy donors were purchased from All Cells, Inc. 
Patient characteristics are shown in supplemental Table 1.   
 
 
Mass cytometry 
Thawed bone marrow mononuclear cells (BMMNCs) were stained with custom panels 
of metal conjugated antibodies according to manufacturer-suggested concentrations 
(Fluidigm) (Antibodies as noted in supplemental Table 2). Cells were fixed, 
permeabilized and washed in accordance with the manufacturer’s cell surface and 
nuclear staining protocol as described. After antibody staining, cells with incubated with 
intercalation solution, mixed with EQ Four Element Calibration Beads (catalogue 
number 201708), and acquired using a Helios mass cytometer (all from Fluidigm). 
Gating and data analysis was performed using Cytobank (https://www.cytobank.org). 
Viable cells and doublets were excluded using cisplatin intercalator and DNA content 
with iridium intercalator. Equal numbers of cells from each donor were utilized when 
data were concatenated prior to analysis.   
 
 
CITE-Seq 
After thawing bone BMMNCs, live cells were isolated using the EasySep™ Dead Cell 
Removal (Annexin V) Kit (STEMCELL Technologies) per the manufacturer’s protocol. 
Cells were then stained using the TotalSeq-C antibody cocktail (supplemental Table 3) 
following 10X Genomics’ protocol for Chromium Single Cell Immune Profiling with 
Feature Barcoding Technology (ver. 1.0). Gene expression and cell surface libraries 
were prepared according to the protocol from 10X Genomics. The quality of the 
prepared libraries was assessed using the Agilent HS Bioanalyzer 2100 and 
sequencing was conducted with the Illumina NovaSeq 6000. In order to minimize 
variability, all patients and controls were sequenced together.  
 
 
Data Analysis for CITE-Seq 
Reads were aligned to human reference sequence GRCh38/hg38, filtered, deduplicated 
and converted into a feature barcode matrix using Cell Ranger 4.0. Samples with low 
fraction reads (<70%), high reads mapped to antisense strand (>10%) and with 
problematic barcode rank plot were excluded. Final samples with feature barcode matrix 
containing data for genes and 55 surface proteins were analyzed using Seurat V3 (43).  
Cells with fewer than 200 unique sequenced genes, more than 10% mitochondrial gene 
and more than 70,000 sequenced features were filtered to exclude dead cells and 
doublets. The data was batch corrected using canonical correlation analysis (CCA) 
method using Seurat V3 data integration pipeline. Gene expression for each cell was 
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normalized using R package SCTransform(44) which fits regularized negative binomial 
(NB) regression model. For each gene unique molecular identifiers (UMI) counts are 
considered as the response and cellular sequencing depth as the predictor variable to 
obtain regularized parameter estimates. The estimated regularized regression 
parameter was used to transform the UMI counts for each gene into Pearson residuals 
serving as a scaled gene expression data. Regularized NB model in comparison to log-
normalization technique has been suggested to prevent overestimation of true variance 
in low-abundance genes(44).  The final data set used for analyses consisted of 84,128 
cells from 18 samples (Healthy, n =4; IgM MGUS, n = 7; and WM, n =7). Protein 
expression data were treated as compositional data and normalized independently of 
transcriptomic data using centered log-ratio (CLR) normalization, where counts were 
divided by the geometric mean of the corresponding feature across cells, and log-
transformed (45). Principal component analysis (PCA) was then performed using top 
3000 variable genes ranked by residual variance. Elbow method was utilized to identify 
number of principal components that explained maximum variability in data which 
resulted in 20 as an optimal number of principal components. Local neighborhood for 
each cell was defined by taking the 20 nearest neighbors in the kNN-Graph calculated 
using Euclidean distance in the PCA space. Rare and non-convex cell populations were 
further identified using shared nearest neighbor (SNN) networks by calculating 
neighborhood overlap using Jaccard index. Finally, Louvain community detection 
algorithm with resolution of 0.5 was used to identify 42 clusters of cells with similar gene 
expression profiles. These 42 clusters were further classified into four major categories 
B, T/NK, myeloid and precursor cell types based on the protein expression of CD19, 
CD3, CD14 and confirmed by reference transcriptomic datasets of immune cells with 
SingleR (46). Cells in each of these four major categories were analyzed separately and 
sub-clustering within each category were performed based on transcriptomic and 
protein expression data. The sub-cluster identity within each category was determined 
by using significantly differentially expressed genes and proteins using Wilcoxon rank-
sum test between each cluster and the rest. Differentially expressed genes were 
denoted as statistically significant for the Bonferroni adjusted p < 0.05 with a fold 
change exceeding 1.2x (i.e., ≥ 1.2 or ≤ 0.83). Pathway analysis for significantly 
differentially expressed genes was performed with DAVID Gene Functional 
Classification Tool (47) using over-representation analysis method. Gene set 
enrichment analysis (GSEA) (48) method was used for pathway analysis based on pre-
ranked genes. Reactome (49) and Hallmark (50) gene sets were utilized and pathways 
with q-value<0.05 were retained. Data are uploaded to GEO at GSE179221. 
 
 
B cell receptor (BCR) sequencing and BCR imputation from transcriptomic data 
 
B cell receptor sequencing (BCR) reads from FASTQ were aligned to GRCh38-alts-
ensembl using Cellranger vdj pipeline version 6.0.2 to generate single-cell V(D)J 
(variable, diversity and joining) segments for heavy and light chains. The unique 
combination of heavy and light chain genes is referred to as clonotype. The clonotype 
data for BCR sequencing were mapped to Seurat object containing CiTe-Seq data by 
matching cell barcodes. Clonotypic frequency obtained from Cellranger output were 
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depicted using pie-chart. We also imputed the BCR clonotype from transcriptomic data 
using Cellranger VDJ pipeline 6.0.2. Clonotypic frequency were generated similar to 
BCR sequencing data. 
 
Cell sorting 
Frozen Bone marrow mononuclear cells (BMNNCs) or peripheral blood mononuclear 
cells (PBMCs) from healthy donors (n=3) and patients with IgM MGUS (n=2) and WM 
(n=5) were thawed and stained prior to cell sorting using BD FACSAria. BMMNCs were 
stained with live dead dye (Thermoscientific) as well as the following antibodies to 
detect CD19 (clone HIB19, BD Bioscience) and CD3 (HIT3a), 14 (M5E2) CD56 
(HCD56), CD10 (HI10a) and CD34 (581) all from Biolegend. Cells were gated to obtain 
single, living, Lin-(CD3,14,56-) cells and 4 different fractions were collected for exome 
sequencing: CD19+CD10-, CD19+CD10+, CD19-CD34- and CD19-CD34+. DNA was 
extracted using the AllPrep DNA/RNA Micro Kit (Qiagen) and used for exome 
sequencing or QPCR analysis to detect MYD88L265P mutation. PBMNCs were labeled 
with live dead dye, and antibodies to detect CD19 and CXCR5 (clone RF8B2, BD) as 
well as Igkappa light chain (TB28-2), Iglambda light chain (MHL-38) from Biolegend. 
Cells were gated to obtain single, live cells and 4 different fractions of CD19+ cells were 
sorted: Kappa+CXCR5+, Kappa+CXCR5-, Lambda+CXCR5+, Lambda+CXCR5- cells. 
DNA was extracted using AllPrep DNA/RNA Micro Kit (Qiagen) and used to perform 
QPCR for detection of MyD88L265P.  
 
 
Exome sequencing and data analysis 
Exome capture was performed using the IDT xGen v1 capture kit (Integrated DNA 
Technologies) according to manufacturer’s instructions. Exome FASTQ sequencing files 
were quality and adapter trimmed using Trim Galore (v0.6.4) with Cutadapt (v2.8) 
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) prior to mapping to 
the GRCh38 reference genome (GRCh38.d1.vd1.fa.tar.gz; 
https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files) with BWA 
(v0.7.17-r1188)(51). Mapped SAM files were converted to BAM files with SAMtools 
(v1.10)(52)and read groups and duplicate reads were marked using the Genome 
Analysis Toolkit (v4.1.9.0)(53). Variant alleles were called with Mutect2 (v4.1.9.0)(53) 
with all BAM files for a given patient included and using the 1000 genomes project 
‘Panel of Normals’. VCF files were converted to a matrix format in R (v3.6.3) with the 
bedr (v1.0.7) package, and annotation of variants was performed with the 
VariantAnnotation (v1.32.0) package(54). Variants with at least 40x coverage in all 
samples were analyzed for different allele frequencies between any two cell types using 
a two-sided Fisher’s exact test with a Benjamini-Hochberg FDR correction. Variant 
allele frequencies from Mutect2 were shown in figures and Venn diagrams of mutations 
required a minimum of two reads to call a mutation present in a given cell type. Overall, 
exome sequencing was performed to median depth of 162,486,965 reads with greater 
than 99% mappability resulting in a median exome coverage of 213x. 
 
MYD88 L265P allele specific qPCR 
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Allele specific qPCR for MYD88 L265P was performed as previously described(55). 
Briefly the qBiomarker Somatic Mutation PCR Assay (Qiagen) MYD88_85940 was used 
to determine the total MYD88 fraction as compared to the MYD88 L265P alleles on a 
CFX96 Touch Real-Time PCR Detection System (Bio-Rad). Variant allele fraction was 
calculated as the ratio of variant allele to total MYD88 using the following formula as per 
manufacturer recommendations. 

VAF ൌ  2ሺେ୲ ୑ଢ଼ୈ଼଼ ୲୭୲ୟ୪ିେ୲ ୑ଢ଼ୈ଼଼ ୐ଶ଺ହ୔ሻ. 
 
Evaluation of WM-specific immunity 
The presence of WM-specific T cells in blood or bone marrow was quantified both 
directly ex vivo and after in vitro stimulation with autologous tumor loaded dendritic cells 
(DCs) using a 16h ELISPOT assay as described(56). This assay allows for detection of 
global tumor-specific immunity against multiple tumor-derived antigens. Briefly, 
autologous T cells were cultured with unpulsed DCs (as controls), or CD19+ tumor-
loaded DCs at a T:DC ratio of 1:10. After 16h, the presence of tumor-specific IFN- spot 
forming cells was quantified as described(56). For in vitro expansion, T cells were 
cultured with autologous tumor-loaded DCs for 10-14 days at T:DC ratio of 1:30 in the 
presence of IL2 (Chiron) at 10 U/ml on days 4 and 7. In this assay, DCs are needed 
both for expansion of tumor-specific T cells as well as for readout of T cell immunity.   
 
Detection of MYD88-speciifc immunity 
Thawed MNCs were cultured overnight with peptides containing wild type or mutant 
(L265P) MYD88 mutation sequences. After overnight culture, culture supernatant was 
harvested and analyzed for the presence of IP-10, as previously described(57).  
 
 
Statistics 
Statistical analysis of mass cytometry data was performed using 2D graphing and 
statistics software GraphPad Prism. Nonparametric Mann-Whitney (for comparing 2 
groups) and Kruskal-Wallis (for comparing 3 groups) tests with a significance threshold 
of P < 0.05 were used to compare different cohorts. Wilcoxon’s rank-sum test with a 
significance threshold of P < 0.05 after Bonferroni’s correction was used to identify 
differentially expressed genes between clusters and disease states in the scRNA-Seq 
data. We used χ2 with a significance threshold of P < 0.005 to identify clusters with 
differential composition by disease state. Data in bar graphs were plotted as mean ± 
SEM. 
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Figure legends: 
 
 
Fig1. Changes in bone marrow microenvironment comparing healthy donors (HD), IgM 
MGUS and WM 
 
1a. Overall strategy. Bone marrow mononuclear cells (BMMNCs) were obtained from 
patients with IgM MGUS (n=8), WM (n=8) as well as age-matched healthy donors (HD; 
n=5). Cite-Seq, single cell mass cytometry, BCR sequencing, and exome sequencing 
was performed on the samples. BMMNCs were also used for functional assays to test T 
cell reactivity to tumor. 
 
1b. BMMNCs from HD(n=5), MGUS (n=8) and WM (n=8) were stained with metal 
conjugated antibodies. Data was analyzed using Cytobank software. Figure shows 
tSNE plots of concatenated live cell gated data from mass cytometry analysis. 
Concatenations were done with equal cell numbers of cells from each donor. The 
overlay plots show differences in different immune cell subsets including differences in 
B cell subsets (naïve B cells (brown) and CXCR5neg B cells in MGUS and WM (orange), 
myeloid/monocyte population (green) and T cells (pink) in patients with MGUS (pink).  
 
1c. BMMNCs from HD (n=4), MGUS (n=7) and WM (n=7) were labeled with total seqC 
antibodies and processed using the 10X dropseq platform. Figure shows UMAP 
clustering of 84,128 single BMMNCs based on transcriptome. 42 distinct clusters could 
be identified, including B/lymphoplasmacytoid (LPC) cells (cluster 
3,4,10,14,18,22,29,34,32,37,39), T/NK cells (0,1,6,7,9,11,12,19,20,27,31,33,36,41), 
Myeloid cells including monocytes and dendritic cell subsets (cluster 2,5,23,25,30) as 
well as progenitors/precursor cells (cluster 8,13,15,16,21,24,26,28,40). 
 
1d. Feature plots showing surface expression of lineage antibodies CD3, CD56, CD19, 
CD14 on clusters in 1c.  
 
1e. UMAP clustering of BMMNCs cells by cohort. Figure shows differences in distinct 
myeloid (cluster 2,5) and B cell populations (cluster 3) in MGUS and WM, as well as in 
B/LPC populations in MGUS and WM (e.g. clusters 4, 10, 17, 22).  
 
 
Fig 2. Mass cytometry analysis of changes in B cells 
 
Single cell mass cytometry was performed on BMMNCs from HD (n=5), or patients with 
IgM MGUS (n=8) and WM (n=8). 
 
2a. tSNE plot gated on CD19+ B cells by cohort. Figure shows differences in different B 
cell subsets including differences in naïve B cells (green) and switched memory B cells 
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in MGUS and WM (brown) and in CXCR5neg B cell subset in MGUS and WM patients 
compared to HD (purple). 
 
2b. Phenotypes of major subpopulations of CD19+ cells in Fig 2a. Heatmap shows 
expression of cell surface markers (CXCR5, CD27, CD38, CD21, CD22, HLADR, CD40, 
CXCR4, C-kit, CD79b and CD20), immunoglobulins (IgD, IgM) in the different CD19+ 
cell populations shown in Fig 2a. Histogram shows expression of CD19 on the various B 
cell populations and T cells as control. 
 
2c. Differences in CXCR5 positive B cells. Graphs shows percent of CXCR5 positive 
cells in HD, MGUS and WM. Each dot represents a unique patient.  
 
2d. Differences in naïve B cells. Figure shows naïve B cells as percentage of total B 
cells in HD, MGUS and WM. Each dot represents a unique patient. 
 
2e. Differences in B cells based on expression of clonal light chain. CD19+ B cells from 
MGUS and WM were gated based on the presence of clonal Ig light chain 
(kappa/lambda, depending on the light chain of the M spike). Figure shows differences 
in B cell populations including in naïve B cells (right panels) and CXCR5+ B cells (left 
panels) in both clonal light chain positive (clonal LC+) as well as B cells expressing the 
opposite light chain (termed as non-clonal LC+) in MGUS and WM.  
 
# p=0.06, * p<0.05, **p<0.01 Kruskal Wallis. 
 
 
Fig 3. CITE-seq analysis of differences in CD19+ cells. B cells were identified based on 
their surface binding of anti-CD19 antibody and antibody based UMAP clustering 
analysis was performed on the B cell associated antibodies used in CITE-Seq (IgD, 
CD27, CXCR5, CD138, PD-1, CD10. CD16, CD21, CD79b, CD27, CD38 and CD20). B 
cells from patients with IgM MGUS (4,039 cells) and WM (13,077 cells) were compared 
to those from HD (3,403 cells). 
 
3a. UMAP of B cells clustered based on binding to antibodies. Figure shows distribution 
of B cells in 10 distinct clusters within the three cohorts, showing differences in 
IgD+CD27- naïve B cells (cluster 2) and in CXCR5neg B cells (cluster 3) in MGUS and 
WM.  
 
3b. Feature plot showing binding of antibodies against IgD, CD27, CD10 and CXCR5 in 
B cells within the different clusters.  
 
3c. Proportion of cell clusters by cohort. Bar graph shows distribution of B cells from 
HD, MGUS and WM within different clusters shown in 3a. MGUS and WM cohorts had 
decreased proportion of cells in cluster2 and a relative increase in cluster 3 when 
compared to HD B cells. Graph shows mean+/- SEM. *p<0.05, **p<0.01 Kruskal Wallis. 
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3d. UMAP of CD19+ B cells based on transcriptome. UMAP clustering analysis was 
performed on all B cells (n=20,519) from HD, MGUS and WM. This clustering analysis 
revealed 24 transcriptionally distinct B cell populations.  
 
3e. UMAP of CD19+ B cells based on transcriptome by cohort. Figure shows decline in 
B cells in cluster 1 in MGUS and WM, while this it is the dominant cluster in HD. 
Transcriptome based UMAP also revealed unique (patient-specific) B cell clusters 
(circled) in WM. 
 
3f. Heatmap of patient-specific clusters of clonal B cells. 
Comparison of transcriptomes of unique B cell clusters identified in WM revealed 
distinct patient-specific patterns of gene expression. Data shown in the heatmap 
includes top 10 differentially expressed genes from each B cell cluster. 
 
 
Fig 4. Changes in myeloid cells 
BMMNCs that did not bind to either anti-CD3 or anti-CD19 antibody from healthy donors 
(11,160 cells), MGUS (10,376 cells) and WM (11,262 cells) were analyzed using 
transcriptome based UMAP clustering to evaluate changes in myeloid cells, NK cells 
and progenitors.  
 
4a. UMAP of CD3-CD19- cells based on transcriptome expression revealed 24 different 
clusters including myeloid/monocyte clusters (0,1,7,13,14,17), NK cell clusters 
(5,9,19,22) and progenitor/precursor cell clusters (2,3,4,6,8,10,12,15,16,18, 21,23). 
 
4b. Feature plot showing antibody binding for CD14, CD11c, CD16, CD56 and c-kit as 
well as hemoglobin expression (by transcript). 
 
4c. UMAP of CD3-CD19- cells by cohort showing decreased proportion of cells in 
myeloid clusters 0 and 1 in WM.  
 
4d. Proportion of myeloid clusters by cohort 
Bar graph showing the proportions of all myeloid clusters in HD, MGUS or WM, with 
decline in cluster 1 and increase in cluster 7 in MGUS and WM compared to HD. 
 
4e. Volcano plot of genes differentially expressed in myeloid cluster 7. Many of the 
genes overexpressed in this cluster include those associated with myeloid inflammation.  
 
4f. Pathway analysis of differentially regulated genes enriched in myeloid cluster 7.  
 
 
Fig 5. Changes in T cells 
 
5a. tSNE plot of changes in T cells by cohort. 
BMMNCs from HD, MGUS and WM were analyzed using mass cytometry. CD3 T cells 
from HD, MGUS and WM cohorts were concatenated using equal numbers of cells from 
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individual patients and analyzed using t-SNE analysis.  Overlay plot shows distribution 
of T cells across different cohorts with progressive increase in CD8 granzyme+ T cells 
(red) in MGUS/WM and decline in naïve CD8+ T cells (brown) compared to HD.  
 
5b. Phenotype of major CD4/CD8+ T cell subsets. Heat map shows protein expression 
of cell surface markers as well as transcription factors/lytic molecules in the different T 
cell subsets shown in 5a. The CD8+ granzyme+ T cells enriched in WM have a 
phenotype of TCF1loTigit+ KLRG1+ T cells.  
 
5c. Proportions of CD8 T cell subsets in HD and WM. Figure shows naïve (TN; CCR7, 
CD45RO-), effector memory (TEM; CCR7-CD45RO+), central memory (TCM; CCR7-, 
CD45RO+CD45RA+) and terminal effectors (TERM EFF; CCR7-CD45RO-) cells as 
percent of total CD8 T cells in healthy donors and WM patients. Each dot represents a 
unique patient. *p<0.05 Kruskall Wallis.  
 
5d. Proportion of granzyme positive CD8 T cells as a proportion of total CD8 T cells in 
HD, MGUS and WM patients. Each dot represents a unique patient.  
*p<0.05 Kruskall Wallis.  
 
5e. Volcano plot of differentially expressed genes in CD8+ T cells in MGUS versus HD 
based on CITEseq. 
 
5f. Volcano plot of differentially expressed genes in CD8+ T cells WM versus HD based 
on CITEseq. 
 
 
Fig 6. Tumor-specific immunity in WM 
 
6a. Detection of WM-specific immunity in freshly isolated T cells from blood/bone 
marrow. Freshly isolated blood or marrow derived T cells were cultured overnight in the 
presence of autologous monocyte-derived mature DCs loaded with autologous tumor 
cells (or unpulsed mature DCs as control). Tumor-specific interferon- producing T cells 
were quantified with an Elispot assay. Each dot represents mean of replicates from an 
individual patient.  
 
6b. Ex-vivo expansion of WM-specific T cells by autologous tumor-loaded DCs. Blood or 
bone marrow T cells were stimulated for 10-14 days in the presence of autologous 
tumor-loaded (or control either unloaded or loaded with CD19- (non-tumor; NT) cells) 
mature DCs. The presence of tumor-specific T cells was quantified using IFN- Elispot 
with autologous tumor loaded DCs for detection of tumor-specific T cells. Each dot 
represents mean of replicates from an individual patient.  
 
6c. CD4 T cell depletion: Responder T cells from experiment described in 6b were 
depleted of CD4+ T cells utilizing magnetic beads, prior to testing for reactivity using 
tumor-loaded DCs. The presence of tumor-specific T cells was quantified using IFN- 
Elispot. Each dot represents mean of replicates from an individual patient.  
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6d and 6e. Detection of MYD88 L265P-specific reactivity in WM patients. MNCs were 
cultured with peptides spanning wild type or mutant MyD88 L265P sequences. The 
presence of peptide reactivity was assayed based on the detection of IP-10/CXCL-10 in 
the supernatant. 6d shows data from representative patients with or without MYD88 
reactivity. 6e shows summary of MyD88 L265P reactivity in all patients and healthy 
donors studied. 
 
 
Fig 7. Exome sequencing of early B cell progenitors and proposed model for WM 
evolution. 
 
7a-7c. MYD88 mutations are present throughout the hematopoietic system.  
 
7a: Variant allele fractions (VAF) in CD19+CD10- cells (y-axis) as compared to 
CD19+CD10+ pre-B cells (x-axis; left), CD19-CD34- (middle), and CD19-CD34+ (right) 
cells. All variant alleles are shown and those with significantly different allelic fractions 
(FDR ≤0.05) between any two cell fractions are shown in red with select genes labelled 
in colored triangles.  
7b: Venn diagrams of variants shared and distinct between cell fractions.  
7c:  VAF of MYD88L265P across CD19-CD34+, CD19-CD34-, CD19+CD10+, and 
CD19+CD10- cell fractions.  
 
7d. Proposed model for WM development: Acquisition of MYD88 mutation in 
hematopoietic progenitors is an early event in the origin of WM and associated with 
several changes in immune microenvironment including increase in extrafollicular B 
cells, myeloid inflammation and alteration in immune function that begin as early as 
MGUS stage. B cell clone emerges in this milieu and undergoes progressive growth and 
evolution in the WM stage. Host immune system mediates tumor-specific recognition of 
the clone but undergoes immune exhaustion over time. 
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Supplementary Figure 1
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Supplementary Fig 1. Proportion of bone marrow B cells, T cells and
monocytes by mass cytometry.
Single cell mass cytometry was performed on bone marrow mononuclear cells
(BMMNCs) obtained from patents with IgM MGUS (MGUS; n=8), Waldenstrom
macroglobulinemia (WM; n=8) and age-matched healthy donors (HD; n=5).
Figure shows CD19+ B cells, CD14+ monocytes and CD3+ T cells as percent of
total bone marrow mononuclear cells (BMMNCs) in each sample. Bar graph
represents mean +/- SEM. (** p<0.01, ***p<0.001



Supplementary Figure 2
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Supplementary Fig 2. Overview of CITE-Seq analysis plan for cell types.
Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq)
was performed on 84,128 bone marrow cells from patients with MGUS (29,780
cells), WM (33,402 cells) and age matched HD (20,946 cells). Figure shows
schema for analysis as well as the number of cells analyzed by CITESeq.



Supplementary Figure 3
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Supplementary Fig 3. Cluster identity heatmap.
Transcriptome based UMAP clustering analysis was performed on scRNA on
bone marrow mononuclear cells from IgM MGUS (MGUS; n=7), Waldenstrom
(WM; n=7) and age-matched healthy donors (HD; n=4). Figure shows top 5
differentially regulated genes for each of the 42 clusters shown in Figure 1c.
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Supplementary Fig 4. Annotation of cell proportions based on transcriptome
in CITE-Seq.
Patient level data showing proportions of T/NK cells, B cells, monocyte/myeloid
cells and hematopoietic progenitors in heathy donor bone marrow (n=4) as well as
bone marrow from patients with MGUS (n=7) and Waldenstrom (n=7) shown in
Figure 1c. Figure shows mean +/- SEM. (* p<0.05, **p<0.01)
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Supplementary figure 5

Supplementary Fig 5. Patient level data for B cell subsets shown in Fig2a.
Single cell mass cytometry was performed on bone marrow mononuclear cells
(BMMNCs) obtained from patents with IgM MGUS (MGUS; n=8), Waldenstrom
(WM; n=8) and age-matched healthy donors (HD; n=5). Figure shows patient
level data for naïve B cells (IgD+, CD27+), switched memory B cells (IgD-,
CD27+, IgM-), transitional memory (IgD+, CD27+, IgM+), CXCRneg population-1
and CXCR5neg population-2 as shown in the tSNE plot in Figure 2a. Figure shows
mean +/- SEM. (**p<0.01)



Supplementary Figure 6
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Supplementary Fig 6. Cluster identity heatmap (clustering based on
antibody staining) for B cell clusters in Fig 3a.
B/lymphoplasmacytoid cells were identified based on their surface binding of anti-
CD19 antibody and antibody based UMAP clustering analysis was performed
using B cell-associated antibodies used in CITE-Seq. Cluster identity heatmap of
differential antibody expression for the 10 different B cell clusters identified by
antibody based UMAP clustering shown in Figure 3a.



Supplementary Figure 7: Monocle single-cell trajectory analysis reveals differences
in B cell trajectories between WM and HD. CD19+ cells from all WM (n=13077 CD19+
cells) and HD (n=3403 CD19+ cells) single-cell RNA sequencing data were isolated, and
trajectories were calculated using Monocle. A) Monocle trajectory analysis identified 3
states with one branchpoint. B) Pseudotime analysis identified trajectories from pre-B cells
to mature B cells. The pseudotime of 0 corresponds to the pre-B cell population at the
beginning of State 1, and later pseudotimes correspond to the two terminal states post-
branch point with mature B cells. C) Distribution of cell populations along Monocle
trajectories by disease state visualized on the trajectory plots (left=HD, right=WM). D)
Proportion of total cells in each state for both HD and WM. The two terminal states had
differential distributions, with the left state (State 2) enriched for WM B cells and the right
state (State 3) enriched for HD B cells. ***p<0.001, chi square test.

Supplementary Figure 7



Supplementary Figure 8
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Supplementary Fig 8. Cluster identity heatmap of B cells clusters in Fig 3d.
Transcriptome based UMAP clustering analysis performed on CD19+ cells
(n=20,519) from HD, MGUS and WM revealed 24 transcriptionally distinct
B/lymphoplasmacytoid cell populations. Figure shows top 10 differentially
regulated genes in each of the 24 distinct clusters shown in figure 3d.
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Supplementary Figure 9
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Supplementary Fig 9. B cell receptor analysis of B cell clusters and clonal versus
non-clonal IgL+ B cells.
Transcriptome based UMAP clustering on CD19+ cells revealed that clonal B cells from
each of the WM patients formed distinct clusters. To access clonal nature of B cells within
these distinct clusters, B cell receptor sequencing was performed using the 10X single cell
sequencing platform from bone marrow cells of WM patients (n=5) and healthy donors
(n=4). The BCR sequences were mapped on the UMAP clusters shown in figure 3D-E. A.
Bar graph shows frequency of the largest clone in the distinct clusters. Also shown are the
cluster numbers and patient sample ID for the clusters. B. We also imputed BCR
sequencing using the 10X VDJ cell ranger pipeline. Pie chart shows frequency as well as
sequence of the clone as determined by direct BCR sequencing (BCR-Seq) and VDJ
transcriptome analysis (BCR-Transcriptome). Cluster 14, 0/3/22 are clusters from WM
patients and cluster 1 is a cluster of non-clonal B cells from HD and WM patients. C.
Detection of clonal BCRs in clonal versus non-clonal IgL+ B cells. Bar graph shows the
frequency of top25 clones (unique CDR3 regions) identified in the clonal light chain (kappa)
expressing B cells as well as non-clonal light chain expressing B cells (lambda) from a WM
patient as a representative example.
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HALLMARK pathways NES FDR q-val
TNFA_SIGNALING_VIA_NFKB 2.15 0.0000
IL2_STAT5_SIGNALING 2.11 0.0010

EPITHELIAL_MESENCHYMAL_TRANSITION 1.94 0.0037
IL6_JAK_STAT3_SIGNALING 1.94 0.0028
HYPOXIA 1.93 0.0024

TGF_BETA_SIGNALING 1.89 0.0030

B. Enrichment Plots

Supplementary Figure 10

A. Top differentially regulated Pathways in mature B cells from WM compared to HD

Supplementary Fig 10. WM B cell pathway analysis and enrichment plots
Gene set enrichment analysis(GSEA) was performed using fold change based pre
ranked genes from WM mature B cells compared to mature B cells from healthy
donors. A. Top differentially up-regulated pathways in mature B cells from WM
compared to HD. B. Enrichment plot for TNFa/NFKB and IL6/Jak/STAT3 pathway
in WM. NES: Normalized enrichment score based on permutation-based testing
from (GSEA).



HALLMARK Pathway NES FDR q-val

TNFA_SIGNALING_VIA_NFKB 2.62 0.0000
EPITHELIAL_MESENCHYMAL_TRANSITION 2.33 0.0000

P53_PATHWAY 2.29 0.0000

HYPOXIA 2.14 0.0015

APOPTOSIS 2.06 0.0045

IL6_JAK_STAT3_SIGNALING 1.98 0.0112
INFLAMMATORY_RESPONSE 1.94 0.0142

B. Enrichment Plots

A. Pathways upregulated in mature B cells from MGUS compared to HD

Supplementary Figure 11

Supplementary Fig 11. MGUS B cells pathway analysis and enrichment plots
Gene set enrichment analysis(GSEA) was performed using fold change based pre
ranked genes from IgM MGUS mature B cells compared to mature B cells from
healthy donors. A. Top differentially up-regulated pathways in mature B cells from
MGUS compared to HD. B. Enrichment plot for TNFa/NFKB and IL6/Jak/STAT3
pathway in MGUS. NES: Normalized enrichment score based on permutation-
based testing from (GSEA).



Supplementary Figure 12

Healthy WM Healthy MGUS

Supplementary Fig 12. Aberrant gene expression in non-clonal Ig light
chain+ B cells.
A. Heat map of 25 top differentially expressed genes between WM B cells
expressing non-clonal light chain and HD B cells. Some of the genes previously
implicated in lymphomagenesis are highlighted. B. Heat map showing 25 top
differentially expressed genes between MGUS B cells expressing non-clonal
light chain and HD B cells. Some of the genes previously implicated in
lymphomagenesis are highlighted.
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Supplementary Figure 13

Waldenstrom Healthy MGUS Healthy

Supplementary Fig 13. Heatmap comparing transcriptomes of CD19+CD10+
pre-B cells between MGUS, WM and HD.
A. Heatmap of differentially expressed genes (top 25 genes) in Waldenstrom
CD19+CD10+ pre-B cells compared to healthy donor pre B cells B. Heatmap of
differentially expressed genes (top 25 genes) in MGUS pre B cells compared to
healthy donor pre-B cells.
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NES = 3.06
Q-value < 0.001

Supplementary Figure 14

Supplementary Fig 14. Enrichment of B cell derived differential signature in
pre-B cells
Genes upregulated in mature B cells from WM patients compared to those from
HD (fold change > 1.2 and FDR p-value < 0.05) were used to create a
differentially regulated gene set. The plot shows enrichment of this differentially
regulated gene set in CD19+CD10+ pre-B cells from WM patients.



Top differentially regulated Pathways in preB cells from WM compared to HD

HALLMAR Pathway NES FDR q-val

IL6_JAK_STAT3_SIGNALING 2.00 0.0635

Supplementary Figure 15

Supplementary Fig 15. Pathway analysis of top differentially regulated
pathways in WM versus HD pre-B cells.
CD19+CD10+ pre-B cells from WM patients were compared to HD pre-B cells.
Figure shows enrichment plot for IL6/JAK/STAT3 signaling pathway upregulated
in WM pre-B cells.



Supplementary Figure 16
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Supplementary Fig 16. Cluster identity map for Fig 4a.
BMMNCs that did not bind to either anti-CD3 or anti-CD19 antibody from healthy
donors (11160 cells), MGUS (10376 cells) and WM (11262 cells) were analyzed
using transcriptome based UMAP clustering shown in fig4a. Heat map shows top
10 genes differentially regulated in each of the 24 clusters.
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Supplementary Figure 17

Supplementary Fig 17. Patient level data for clusters 1 and 7 in Fig4d.
Transcriptome based UMAP clustering of CD3-CD19- BMMNCs cells revealed 6
distinct myeloid clusters, with HD myeloid cells enriched in cluster 1 and WM and
MGUS myeloid cells enriched in cluster 7 as shown in fig 4D. Figure shows
proportions of myeloid cells in cluster 1 and 7. Each dot is a single sample. Figure
shows mean +/-SEM (*p<0.05)
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Supplementary Fig 18. Cluster distribution of NK clusters in main Fig 4a by
cohort and volcano plot for NK cells HD HD versus WM.
A. Bar graphs show distribution of NK cells within the four different clusters
identified by transcriptome based UMAP clustering shown in figure 4a and 4c. The
figure shows distribution for NK cells in healthy donor (HD), MGUS and
Waldennstrom (WM) bone marrow. Each dot represents a distinct sample. Figure
shows mean +/-SEM (*p<0.05). B. The volcano plot shows differentially regulated
genes between WM NK cells and NK cells from HD.



HALLMARK Pathway NES FDR q-val

INTERFERON_GAMMA_RESPONSE -1.90 0.0026

INTERFERON_ALPHA_RESPONSE -1.88 0.0018

G2M_CHECKPOINT -1.72 0.0232

A. Pathways downregulated in NK cells from MGUS patients compared to HD.

Supplementary Figure 19

NAME NES FDR q-val

HALLMARK_TNFA_SIGNALING_VIA_NFKB -2.53 0.0000

HALLMARK_INTERFERON_GAMMA_RESPONSE -2.13 0.0015

HALLMARK_INTERFERON_ALPHA_RESPONSE -1.89 0.0153

HALLMARK_APOPTOSIS -1.82 0.0189

HALLMARK_G2M_CHECKPOINT -1.82 0.0232

B. Pathways downregulated in NK cells from WM patients compared to HD.

Supplementary Fig 19. Pathway analysis of differentially expressed genes in NK cells.
Gene set enrichment analysis(GSEA) was performed using fold change based pre ranked
genes from WM NK cells compared to NK cells from healthy donors. A. Top differentially
down-regulated pathways in NK cells from WM compared to HD. None of the upregulated
pathways were statistically significant (not shown). B. Enrichment plot for interferon gamma
response and interferon alpha response pathway in WM. NES: Normalized enrichment score
based on permutation-based testing from (GSEA).
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Supplementary Fig 20 . Volcano plots of differentially expressed genes in
CD4+ T cells WM versus HD and MGUS versus HD.
Panel A: Differentially expressed genes in CD4+ T cells in MGUS versus HD.
Panel B: Differentially expressed genes in CD4+ T cells in WM versus HD.



A. Pathways upregulated in T cells from WM compared to HD 

B. Pathways downregulated in T cells from WM compared to HD

HALLMARK Pathway NES FDR q-val

PI3K_AKT_MTOR_SIGNALING 1.78 0.0024

MTORC1_SIGNALING 1.67 0.0123

GLYCOLYSIS 1.65 0.0148

HALLMARK Pathway NES FDR q-val

INTERFERON_GAMMA_RESPONSE -1.98 0.0142

INTERFERON_ALPHA_RESPONSE -1.91 0.0142

TNFA_SIGNALING_VIA_NFKB -1.77 0.0285

Supplementary Figure 21

Supplementary Fig 21 . Differentially regulated pathways in WM T cells.

GSEA enrichment analysis of fold change based pre ranked gene list in T cells
from waldenstrom patients (WM) compared to those from healthy donors (HD). A.
Select pathways upregulated in T cells from WM compared to HD. B. select
pathways downregulated in WM T cells compared to HD.



HALLMARK Pathway NES FDR q-val

MTORC1_SIGNALING 1.91 0.0046

TNFA_SIGNALING_VIA_NFKB 1.91 0.0037

ALLOGRAFT_REJECTION 1.65 0.0406

HALLMATK Pathway NES FDR q-val
NTERFERON_ALPHA_RESPONSE -1.81 0.0359
OXIDATIVE_PHOSPHORYLATION -1.80 0.0189
INTERFERON_GAMMA_RESPONSE -1.61 0.0480

A. Pathways upregulated in T cells from MGUS compared to HD 

B. Pathways downregulated in T cells from MGUS compared to HD

Supplementary Figure 22

Supplementary Fig 22 . Differentially regulated pathways in MGUS T cells.
GSEA enrichment analysis of fold change based pre ranked gene list T cells from
MGUS patients (MGUS) compared to those from healthy donors (HD). A. Select
pathways upregulated in T cells from MGUS compared to HD. B. Select pathways
downregulated in T cells from MGUS patients compared to HD.



Supplementary Figure 23
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Supplementary Fig 23 . Gating strategy for flow sorting in Fig7.
Lineage negative (based on CD3/CD14/CD56) bone marrow mononuclear cells
were sorted into CD19+CD10-, CD19+CD10+, CD19-CD34-, and CD19-CD34+
fractions.



A
B

Supplementary Fig 24. Mutations in B cell subsets in healthy donors.
A. Variant allele fractions in CD19+CD10- cells (y-axis) as compared to
CD19+CD10+ pre-B cells (x-axis; left), CD19-CD34- (middle), and CD19-CD34+
(right) cells in two healthy donors (HD). All variant alleles are show and those
with significantly different allelic fractions (FDR ≤ 0.05) between any two cell
types are shown in black (non-synonymous mutations) or red (synonymous
mutations). B. Venn diagrams of mutations shared and distinct between cell
types. A minimum of two reads were required to call a mutation in any given cell
type.

Supplementary Figure 24



Exome VAF (%)

q
P

C
R

 V
A

F
 (

%
)

0

0

60

60

A
Pearson R = 0.96
P = 3.8 10-15

A

C
D

19
-C

D
34

+
C

D
19

-C
D

34
-

C
D

1
9+

C
D

10
+

C
D

19
+

C
D

10
-

M
Y

D
88

 L
2

65
P

 V
A

F
 (

%
)

Q
N

S
1

8
3

8
3

2

C
D

19
-C

D
34

+
C

D
19

-C
D

34
-

C
D

1
9+

C
D

10
+

C
D

19
+

C
D

10
-

C
D

19
-C

D
34

+
C

D
19

-C
D

34
-

C
D

1
9+

C
D

10
+

C
D

19
+

C
D

10
-

C
D

19
-C

D
34

+
C

D
19

-C
D

34
-

C
D

1
9+

C
D

10
+

C
D

19
+

C
D

10
-

2 0
.9

4 5.
9

4
0

<
0.

1
<

0.
1 6

.3
34

Q
N

S
Q

N
S

Q
N

S
2

9

0

10

20

30

40

50

C
D

19
-C

D
34

+
C

D
19

-C
D

34
-

C
D

1
9+

C
D

10
+

C
D

19
+

C
D

10
-

Q
N

S
1.

5
0.

74
4

6

WM Pt1 WM Pt5WM Pt3 WM Pt4WM Pt2B

C
D

19
-C

D
34

+
C

D
19

-C
D

34
-

C
D

1
9+

C
D

10
+

C
D

19
+

C
D

10
-

C
D

19
-C

D
34

+
C

D
19

-C
D

34
-

C
D

1
9+

C
D

10
+

C
D

19
+

C
D

10
-

M
Y

D
88

 L
2
65

P
 V

A
F

 (
%

)

0.
1
1

<
0.

1
Q

N
S

1
.9

<
0
.1

0.
2

<
0
.1

5.
3

0

2

4

6

8

10
C

MGUS Pt1 MGUS Pt2

C
D

19
-C

D
34

+

C
D

19
-C

D
34

-

C
D

19
+

C
D

10
+

C
D

19
+

C
D

10
-

M
Y

D
88

 L
2
65

P
 V

A
F

 (
%

)

<
0
.1

<
0
.1

<
0
.1

<
0
.1

0

2

4

6

8

10

D
HD1

Supplementary Figure 25

K
+

C
X

C
R

5
+

K
+

C
X

C
R

5
-

L
+

C
X

C
R

5
+

L
+

C
X

C
R

5
-

K
+

C
X

C
R

5
+

K
+

C
X

C
R

5
-

L
+

C
X

C
R

5
+

L
+

C
X

C
R

5
-

K
+

C
X

C
R

5
+

K
+

C
X

C
R

5
-

L
+

C
X

C
R

5
+

L
+

C
X

C
R

5
-

52

M
Y

D
88

 L
26

5P
 V

A
F

 (
%

)

8
.1

3.
5

1.
4

Q
N

S 4
.3

0
.2 0.
6
1

<
0
.1

0
.2

1
1

32

0

10
30

40

50
E

WM Pt3 WM Pt5WM Pt6

Clonal LC Clonal LC Clonal LC

Supplementary Fig 25 . Validation of Exome
sequencing data by qPCR.
A, MYD88 L265P mutations were validated by qPCR.
Shown is the Variant Allele Fraction (VAF) determined by
Exome-sequencing (x-axis) versus that by qPCR (y-axis).
The Pearson correlation (R) value is shown as well as the
P-value of correlation. B-D, Validation of MYD88L265P
allelic fractions by qPCR in Waldenstrom
Macroglobulinemia (WM) patients (B), IgM MGUS (C),
and healthy donor (HD) (D). E-F, Analysis of MYD88
L265P allelic fractions in peripheral blood (PB) cells by
qPCR. CD19+ B cells were sorted on kappa (K) or
lambda (L) light chain and CXCR5 expression. The clonal
light chain is denoted below each patient. Samples w/
less than the limit of detection are denoted by <0.1 and
samples with no data i.e. insufficient sample are noted as
QNS or quantity not sufficient.
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Supplementary Table 1.  Patient characteristics 

 

 

 

*MGUS: monoclonal gammopathy of undetermined significance; WM: Waldenstrom 

macroglobulinemia; Diagnosis of WM and MGUS was based on updated Mayo criteria and required 

>10% bone marrow infiltration in the case of WM (see Gertz M. Am J Hem 96:258-269, 2021). All 

patients were analyzed before initiation of therapy. NA: not applicable; NS: not statistically significant. 

^ in 5 patients with available data 

 IgM MGUS 
(n=8)* 

WM  
(n=8)* 

Healthy Donor 
(n=5) 

 

Median Age (range) 56 years 
(46-70) 

61 years 
(49-79) 

53 years 
(52-55) 

P=NS 

Male 50% 50% 40% P=NS 

M spike IgL Kappa 2 (25%) 6 (75%) NA  

IgM M spike 8 (100%) 8 (100%) NA  

Median M spike g/dl(range) 0.2 (0.1-0.5) 1.35 (0.7-2.9) NA  

Median clonal bone marrow 
infiltration (range) 

<5 (<5-5%) 20 (15-40)   

MYD88 L265P  Not tested 100%^   



Supplementary Table 2: Antibodies used for CyTOF analysis 
 

  Antibody Clone   Antibody Clone 

1 CD45 HI30 27 CD8 RPA-T8 

2 CD19 HIB19 28 CD14 RMO52 

3 CD123 6H6 29 CD127 A019D5 

4 CD4 RPA-T4 30 CD45RA *HI100 

5 IgD 1A6-2 31 TIGIT MBSA43 

6 CD20 2H7 32 TIM3 F382E2 

7 IgA Polyclonal 33 PD-L1 29E.2A3 

8 CD138 *MI15 34 41BB 4B4-1 

9 CD21 BL13 35 CCR7 G043H7 

10 CXCR5 RF8B2 36 CD45RO UCHL1 

11 CD27 L128 37 NKG2D ON72 

12 CXCR4 12G5 38 CD25 2A3 

13 CD11c *Bu15 39 KLRG1 *SA231A2 

14 CD22 HIB22 40 CD56 HCD56 

15 CD79b CB3-1 41 CD16 3G8 

16 CD40 5C3 42 #TCF1 7F11A10 

17 c-kit *104D2 43 #FOXP3 PCH101 

18 CD38 HIT2 44 #EOMES **WD1928 

19 CD24 ML5 45 #Gata3 TWAJ 

20 CD3 UCHT1 46 #Granzyme GB11 

21 IgM MHM-88 47 #lambda MHL38 

22 CD141 1A4 48 #kappa MHK49 

23 HLADR L243 49 #tbet 4B10 

24 PD-1 EH12.2H7 50 #BCL6 K11291 

25 CD57 HNK-1 51 #ki67 Ki-67 

26 CD69 FN50    

 

All metal conjugated antibodies were purchased from Fluidigm 
Purified antibodies purchased from *Biolegend and ** invitrogen were metal tagged using 
fluidigm metal conjugation kit following manufacturers methods. 
#Intracellular markers 
 



Supplementary Table 3: Antibodies used for CiTE-Seq analysis 
 

  Antibody Clone   Antibody Clone 

1 CD117 104D2 31 CD10 HI10a 

2 DNAM-1 11A8 32 CD45 HI30 

3 LAG-3 11C3C65 33 CD19 HIB19 

4 BCMA 19F2 34 CD38 HIT2 

5 NKG2D 1D11 35 CD161 HP-3G10 

6 BDCA-2 201A 36 IgD IA6-2 

7 PD-L1 29E.2A3 37 CD11b ICRF44 

8 KLRG1 2F1/KLRG1 38 CXCR5 J252D4 

9 CD20 2H7 39 CD1c L161 

10 CD16 3G8 40 HLA-DR L243 

11 CD66b 6/40c 41 CCR4 L291H4 

12 CD14 63D3 42 CD141 M80 

13 CD123 6H6 43 Ig light chain κ MHK-49 

14 CLEC9A 8F9 44 Ig light chain λ MHL-38 

15 DC-SIGN 9E9A8 45 CD138 MI15 

16 CD127 (IL-7Ra) A019D5 46 CD27 O323 

17 TIGIT (VSTM3) A15153G 47 CD33 P67.6 

18 CD25 BC96 48 CD57 QA17A04 

19 
CD294 

(CRTH2) 
BM16 49 NCAM QA17A16 

20 CD21 Bu32 50 CD4 RPA-T4 

21 CD244 (2B4) C1.7 51 CD8a RPA-T8 

22 CD79b (Igβ) CB3-1 52 CD11c S-HCL-3 

23 CD28 CD28.2 53 CD155 (PVR) SKII.4 

24 PD-1 EH12.2H7 54 CD45RO UCHL1 

25 CXCR3 G025H7 55 CD3 UCHT1 

26 CCR6 G034E3    

27 29 CCR7    

28 30 CD45RA       

 

TotalSeq-C antibodies were purchased from Biolegend as used following manufacturers methods. 
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