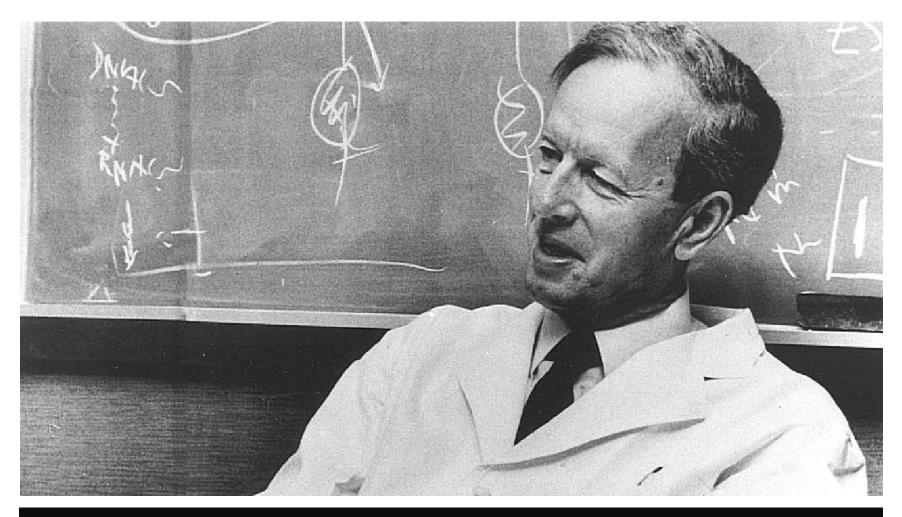


Frontline treatment options in Waldenström Macroglobulinemia

Jorge J. Castillo, MD Assistant Professor of Medicine Harvard Medical School

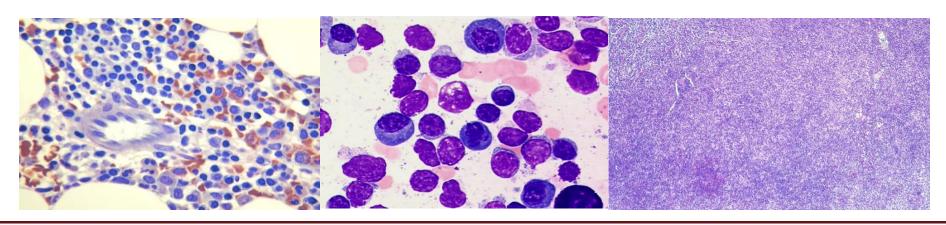
Disclosures

Consulting


- Otsuka Pharmaceuticals
- Biogen IDEC
- Alexion Pharmaceuticals

Research Funding

- Millennium Pharmaceuticals
- Gilead Sciences
- Pharmacyclics Inc.
- Abbvie Inc.


Waldenström's Macroglobulinemia – first described by Jan Gosta Waldenström in 1944.

Lymphoplasmacytic Lymphoma

- <u>Cellular Morphology</u>: lymphocytes, lymphoplasmacytic cells, plasma cells
- <u>BM Pattern</u>: interstitial with diffuse or nodular infiltrates with excess mast cells associated with lymphoid aggregates.
- <u>LN/SP</u>: diffuse pattern

Manifestations of WM Disease

Hepcidin

↓Fe Anemia

 \downarrow HCT, \downarrow PLT, \downarrow WBC

Hyperviscosity Syndrome: Nosebleeds, headache, Impaired vision >4.0 CP

IgM Neuropathy (22%) Cryoglobulinemia (10%) Cold Agglutinemia (5%)

Treon, Hematol Oncol 2013

Adenopathy,

splenomegaly

≤20% (at Dx)

NCCN Guidelines for Initiation of Therapy in WM

- Hemoglobin ≤ 10 g/dL on basis of disease
- Platelets <100,000 mm³ on basis of disease
- Symptomatic hyperviscosity
- Moderate/severe peripheral neuropathy
- Symptomatic lymphadenopathy or hepatosplenomegaly
- Symptomatic cryoglobulins, cold agglutinins, autoimmune-related events, amyloidosis
- Symptomatic extramedullary disease (kidney, lungs, central nervous system, etc.)

Kyle, Semin Oncol 2003 Anderson, JNCCN 2016.

Rituximab

Characteristics

- Anti-CD20 monoclonal antibody
- CD20 is expressed in all Bcells, normal and malignant
- Activates the immune system to kill cancer cells
- Accumulates in the body

Treon et al (2001)

- N=30, retrospective study
- 1-11 infusions; single agent
- IgM went from 2400 to 1500 mg/dl
- Bone marrow involvement went from 60% to 15%
- 60% response rate

Treon J Immunother 2001

Rituximab

Dimopoulos et al (2002)

- N=17; prospective
- 4 weekly doses; repeat at 3 months
- 40% response rate
- Time to response was 3 months
- Time to progression was 16 months

Treon et al (2005)

- N=29; prospective
- 4 weekly doses; repeat at 3 months
- 65% response rate
- Time to best response was 17 months

Dimopoulos Clin Lymphoma 2002

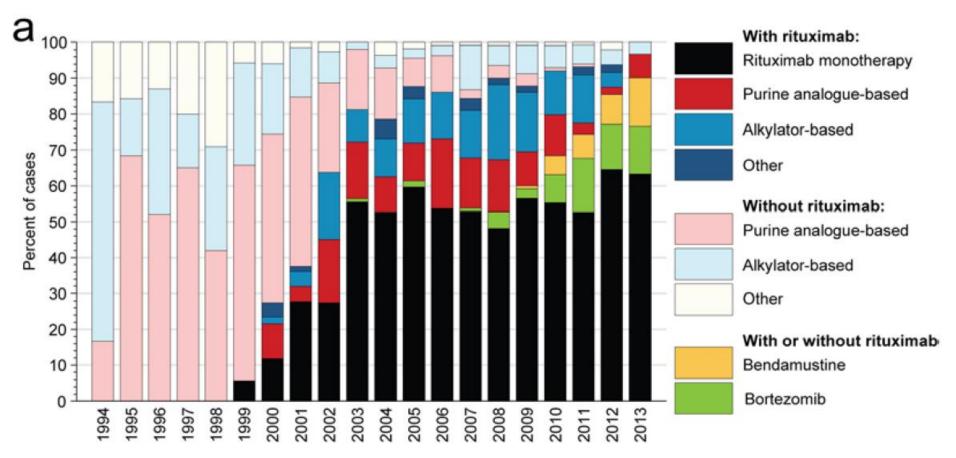
Treon Ann Oncol 2005

Rituximab

Adverse events

- Infusions reactions
- Increased risk of infections
- Low blood counts
- Hepatitis B reactivation

Disadvantages


- Delayed responses
- IgM flare
 - 40% of patients
 - Avoid Rituximab until IgM in "safe range"
- Rituximab Intolerance
 - 7% of patients
 - Consider Ofatumumab

Treon Ann Oncol 2004 Castillo Br J Haematol 2016

Hot off the press!

Olszewski Oncologist 2016

Cyclophosphamide-Based Therapy

Greek experience

- N=72; untreated
- Cyclophosphamide/Dexame thasone/Rituximab
- ORR 83%
- CR 7%
- Median PFS 3 years

A German study

- N=64; untreated
- R-CHOP (n=34) vs. CHOP (n=30)
- Response: R-CHOP 94%; CHOP 67%
- Time to failure: R-CHOP 63 months; CHOP 22 months

Dimopoulos J Clin Oncol 2007 Kastritis Blood 2015

Buske Leukemia 2009

Cyclophosphamide-Based Therapy

Disadvantages

- Hair loss
- Low blood counts
- Nausea and vomiting
- Increased risk of infections
- Secondary leukemia ~1%

Proteasome inhibitor-based therapy

Mechanism of action

- Targets the proteasome, among others
- Proteasome is the garbage disposal of the malignant cell
- "Trash" accumulates in the cell and forces it to die

Chen et al (2007)

- N=27
- Bortezomib: IV twice weekly
- ORR: 70%
- CR: 0%
- Nodal response lagging
- Time to response: 2 cycles

Proteasome inhibitor-based therapy

Treon et al (2009)

- BDR; N=25
- Bortezomib: IV twice weekly
- ORR 96%
- CR 12%
- Progression-free survival 66 months

Dimopoulos (2015)

- N=59
- Bortezomib: IV weekly
- First cycle without rituximab
- ORR: 85%
- CR: 3%
- Progression-free survival 42 months

Treon, JCO 2009 Treon, ASH 2015

Dimopoulos, Blood 2013

Disadvantages

- Peripheral neuropathy
 - Less when given weekly or SC instead of IV
- Low platelet counts
- Steroids
- Zoster prophylaxis
 - Acyclovir or valacyclovir

Proteasome inhibitor-based therapy

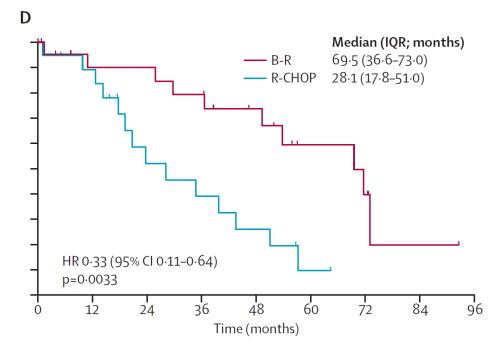
Carfilzomib

- CARD; N=31
- Intravenous twice weekly
- ORR 87%
- CR 3%
- Less neuropathy (<5%)
- Responses less durable in patients with lymphadenopathy

Disadvantages

- Increases glucose and cholesterol
- Hypogammaglobulinemia
- Heart problems: HTN, CAD
- Steroids
- Zoster prophylaxis

Treon, Blood 2014



Bendamustine and rituximab

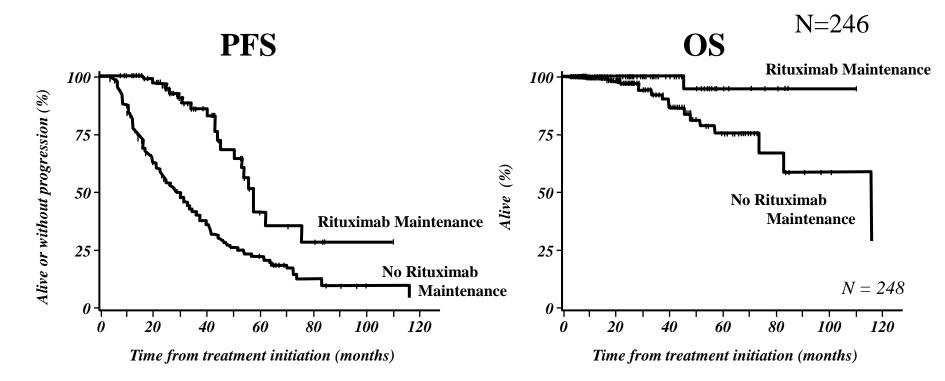
Another German study

- Bendamustine-R (N=22) vs. CHOP-R (N=19)
- Good option for patients with lympadenopathy or enlarged liver/spleen
- ORR 80%
- Progression-free survival 69 months

Rummel, Lancet 2013

Disadvantages

- Potential stem cell toxicity
- Low blood counts
- Infusion reactions
- 1/200 chances of secondary leukemia

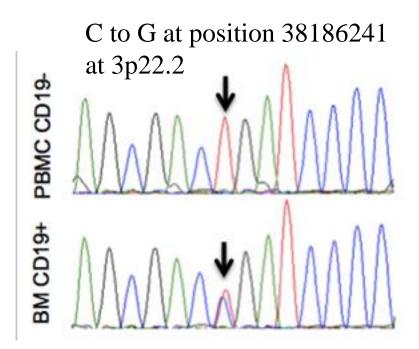

To Maintain or Not to Maintain?

Observation vs. maintenance rituximab therapy in rituximabnaïve patients treated with rituximab regimen.

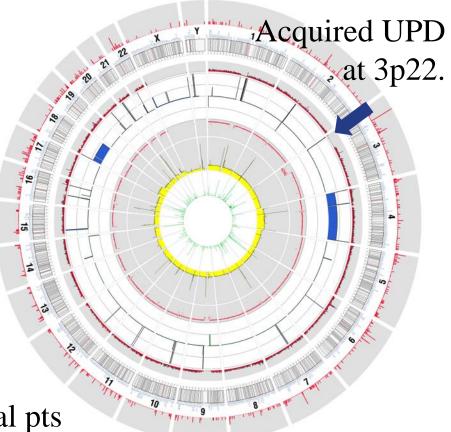
Problems:

Infusion reactions, increased risk of infections, hypogammaglobulinemia.

Treon Br J Haematol 2011

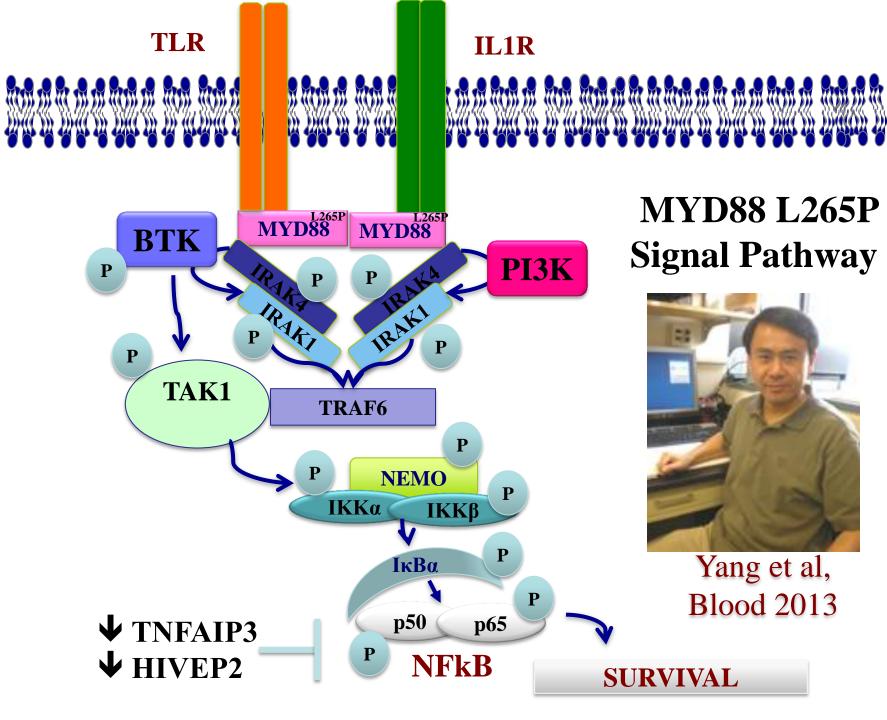


New Directions in WM


MYD88 L265P Somatic Mutation

- 91% of WM pts
- 10% IGM MGUS
- No difference sporadic vs. familial pts

Treon, NEJM 2012



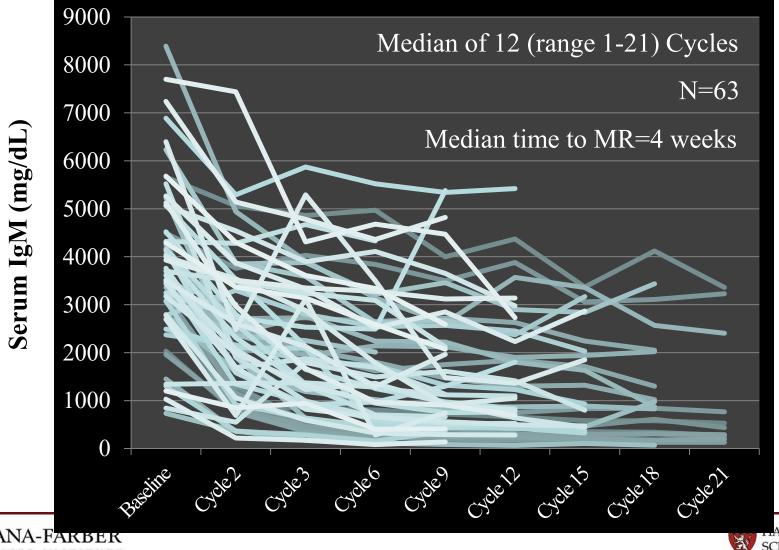
MYD88 L265P in WM/IGM MGUS

		METHOD	TISSUE	WM	IGM MGUS
Treon		WGS/Sanger	BM CD19 ⁺	91%	10%
Xu		AS-PCR	BM CD19 ⁺	93%	54%
Gachard		PCR	BM	70%	
Varettoni		AS-PCR	BM	100%	47%
Landgren		Sanger	BM		54%
Jiminez	<u>.</u>	AS-PCR	BM	86%	87%
Poulain		PCR	BM CD19 ⁺	80%	
Argentou		PCR-RFLP	BM	92%	1/1 MGUS
Willenbacher		Sanger	BM	86%	
Mori		AS-PCR/BSiE1	BM	80%	
Ondrejka		AS-PCR	BM	100%	
Ansell		WES/AS-PCR	BM	97%	
Patkar	۲	AS-PCR	BM	85%	

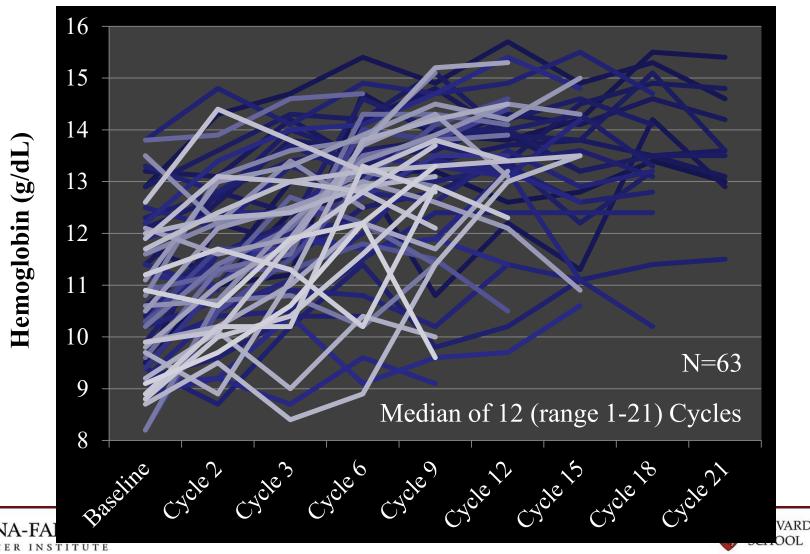
ORIGINAL ARTICLE

Ibrutinib in Previously Treated Waldenström's Macroglobulinemia

Steven P. Treon, M.D., Ph.D, Christina K. Tripsas, M.A., Kirsten Meid, M.P.H., Diane Warren, B.S., Gaurav Varma, M.S.P.H., Rebecca Green, B.S.,
Kimon V. Argyropoulos, M.D., Guang Yang, Ph.D., Yang Cao, M.D., Lian Xu, M.S., Christopher J. Patterson, M.S., Scott Rodig, M.D., Ph.D., James L. Zehnder, M.D., Jon C. Aster, M.D., Ph.D., Nancy Lee Harris, M.D., Sandra Kanan, M.S., Irene Ghobrial, M.D., Jorge J. Castillo, M.D., Jacob P. Laubach, M.D.,
Zachary R. Hunter, Ph.D., Zeena Salman, B.A., Jianling Li, M.S., Mei Cheng, Ph.D., Fong Clow, Sc.D., Thorsten Graef, M.D., M. Lia Palomba, M.D., and Ranjana H. Advani, M.D.

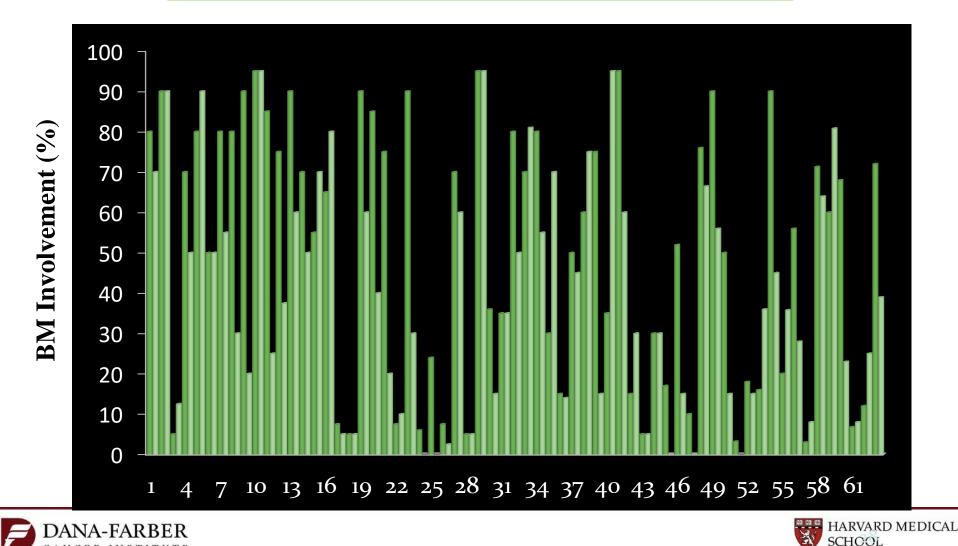

Treon NEJM 2015

Serial Serum IgM Levels Following Ibrutinib


Best IgM Response: 3,610 to 915 mg/dL; p<0.0001

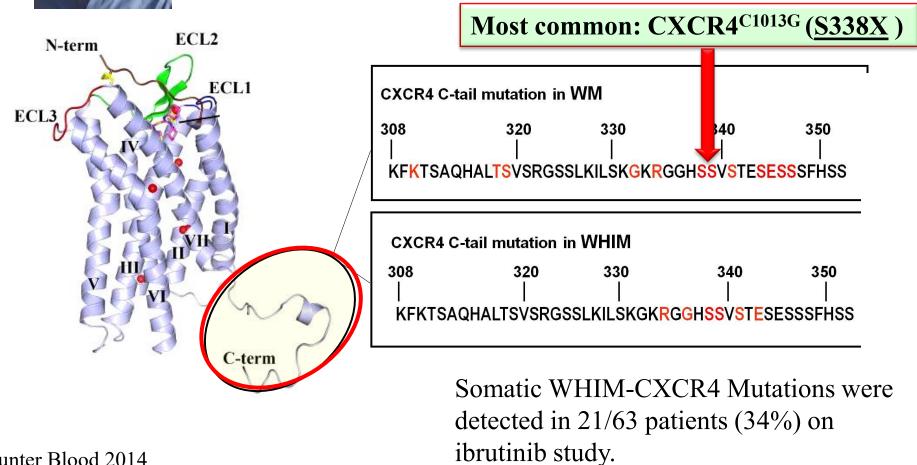
SCHOOL

Serial Hemoglobin Levels Following Ibrutinib


Best Hemoglobin Response: 10.5 to 13.5; p<0.0001

VARD MEDICAL

Bone Marrow Disease Burden following Ibrutinib


At Best Response 60% to 30%; p< 0.001

WHIM-like CXCR4 C-tail mutations in WM

Warts, Hypogammaglobulinemia, Infection, and Myelokathexis.

Hunter Blood 2014

MYD88 and CXCR4 mutation status and Responses to Ibrutinib

	MYD88 ^{L265P} CXCR4 ^{WT}	MYD88 ^{L265P} CXCR4 ^{WHIM}	MYD88 ^{WT} CXCR4 ^{WT}	p-value
N=	34	21	7	
Overall RR	100%	80.9%	57.1%	< 0.01
Major RR	88.2%	57.1%	28.6%	< 0.01

Treon NEJM 2015

Selected studies in untreated patients with Waldenstrom macroglobulinemia

Agent	Ν	Overall response rate	Major response rate	Time to response	Progression- free survival
Rituximab	29	66%*	48% (untreated and treated)	3-6 months	14 months
Bortezomib	27	85%*	48% (treated)	1.4 months	8 months
CDR	72	83%	74% (untreated)	4 months	35 months
BDR twice weekly	23	96%	83% (untreated)	1.4 months	66 months
BDR once weekly	38	85%	68% (untreated)	Not reported	42 months
Bendamustine/ rituximab	22	Not reported	Not reported (untreated)	Not reported	69 months
CARD	31	87%	68% (untreated)	2.1 months	Not reached at 36 months

Castillo Ther Adv Hematol 2016

Frontline clinical trials at DFCI

Ixazomib, dexamethasone, rituximab

- N=26/26 enrolled
- 20 have completed induction treatment
- Minimal toxicity
- Overall response 80%
- Major response 50%

Ibrutinib

- N=18/30 enrolled
- WGS in all patients on a yearly basis
- MYD88 +/- CXCR4

Novel pathways: novel agents

- Oral proteasome inhibitors ixazomib, marizomib
- BTK inhibitors acalabrutinib, BGB-3111
- PI3K-delta idelalisib, TG-1202
- BCL2 antagonism venetoclax
- Anti-CD38 therapy daratumumab
- Anti-CXCR4 therapy ulocuplomab
- TLR inhibitor IMO8400
- IRAK1/4 inhibitor
- MYD88 assembly inhibitor

Summary

- There are multiple effective options for the frontline treatment of Waldenstrom Macroglobulinemia.
- Rituximab can be used as a single agent.
- Bendamustine, bortezomib, carfilzomib and cyclophosphamide are highly effective when combined with rituximab.
- Exciting clinical trials with oral agents are ongoing.
- Future treatments are likely to be less toxic and more effective.

Frontline treatment options in Waldenström Macroglobulinemia

Jorge J. Castillo, MD Assistant Professor of Medicine Harvard Medical School